Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712196

RESUMEN

Background and Aims: Recent studies have highlighted the beneficial effect of resolvin D1 (RvD1), a DHA-derived specialized pro-resolving mediator, on metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms are not well understood. Our study aims to determine the mechanism by which RvD1 protects against MASH progression. Methods: RvD1 was administered to mice with experimental MASH, followed by bulk and single-cell RNA sequencing analysis. Primary cells including bone marrow-derived macrophages (BMDMs), Kupffer cells, T cells, and primary hepatocytes were isolated to elucidate the effect of RvD1 on inflammation, cell death, and fibrosis regression genes. Results: Hepatic tissue levels of RvD1 were decreased in murine and human MASH, likely due to an expansion of pro-inflammatory M1-like macrophages with diminished ability to produce RvD1. Administering RvD1 reduced inflammation, cell death, and liver fibrosis. Mechanistically, RvD1 reduced inflammation by suppressing the Stat1-Cxcl10 signaling pathway in macrophages and prevented hepatocyte death by alleviating ER stress-mediated apoptosis. Moreover, RvD1 induced Mmp2 and decreased Acta2 expression in hepatic stellate cells (HSCs), and promoted Mmp9 and Mmp12 expression in macrophages, leading to fibrosis regression in MASH. Conclusions: RvD1 reduces Stat1-mediated inflammation, mitigates ER stress-induced apoptosis, and promotes MMP-mediated fibrosis regression in MASH. This study highlights the therapeutic potential of RvD1 to treat MASH. Impact and implications: Metabolic dysfunction-associated steatohepatitis (MASH) is an increasing healthcare burden worldwide. Current treatments for MASH and its sequelae are very limited. Recent studies highlighted the therapeutic benefit of specialized pro-resolving mediators (SPMs), including resolvin D1 (RvD1), in liver diseases. However, the mechanisms underlying these beneficial effects are not well understood. Based on unbiased transcriptomic analyses using bulk and single-cell RNA sequencing in RvD1-treated MASH livers, we show that RvD1 suppresses Stat1-mediated inflammatory responses and ER stress-induced apoptosis, and induces gene expression related to fibrosis regression. Our study provides new mechanistic insight into the role of RvD1 in MASH and highlights its therapeutic potential to treat MASH. Highlights: Liver RvD1 levels are decreased in MASH patients and MASH miceRvD1 administration suppresses Stat1-mediated inflammatory responseRvD1 administration alleviates ER stress-induced apoptosisRvD1 administration induces fibrosis regression gene expression.

2.
Front Neurosci ; 18: 1256522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680449

RESUMEN

In the eye, cells from the retinal pigment epithelium (RPE) facing the neurosensory retina exert several functions that are all crucial for long-term survival of photoreceptors (PRs) and vision. Among those, RPE cells phagocytose under a circadian rhythm photoreceptor outer segment (POS) tips that are constantly subjected to light rays and oxidative attacks. The MerTK tyrosine kinase receptor is a key element of this phagocytic machinery required for POS internalization. Recently, we showed that MerTK is subjected to the cleavage of its extracellular domain to finely control its function. In addition, monocytes in retinal blood vessels can migrate inside the inner retina and differentiate into macrophages expressing MerTK, but their role in this context has not been studied yet. We thus investigated the ocular phenotype of MerTK cleavage-resistant (MerTKCR) mice to understand the relevance of this characteristic on retinal homeostasis at the RPE and macrophage levels. MerTKCR retinae appear to develop and function normally, as observed in retinal sections, by electroretinogram recordings and optokinetic behavioral tests. Monitoring of MerTKCR and control mice between the ages of 3 and 18 months showed the development of large degenerative areas in the central retina as early as 4 months when followed monthly by optical coherence tomography (OCT) plus fundus photography (FP)/autofluorescence (AF) detection but not by OCT alone. The degenerative areas were associated with AF, which seems to be due to infiltrated macrophages, as observed by OCT and histology. MerTKCR RPE primary cultures phagocytosed less POS in vitro, while in vivo, the circadian rhythm of POS phagocytosis was deregulated. Mitochondrial function and energy production were reduced in freshly dissected RPE/choroid tissues at all ages, thus showing a metabolic impairment not present in macrophages. RPE anomalies were detected by electron microscopy, including phagosomes retained in the apical area and vacuoles. Altogether, this new mouse model displays a novel phenotype that could prove useful to understanding the interplay between RPE and PRs in inflammatory retinal degenerations and highlights new roles for MerTK in the regulation of the energetic metabolism and the maintenance of the immune privilege in the retina.

3.
Dev Cell ; 59(4): 465-481.e6, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38237590

RESUMEN

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.


Asunto(s)
Epigénesis Genética , Células Madre Pluripotentes , Animales , Ratones , Metilación de ADN/genética , Cromatina/metabolismo , ADN/metabolismo , Diferenciación Celular/genética , Estratos Germinativos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
4.
Diabetes ; 73(2): 260-279, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37934943

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease [NAFLD]) and metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis [NASH]) are leading chronic liver diseases, driving cirrhosis, hepatocellular carcinoma, and mortality. MASLD/MASH is associated with increased senescence proteins, including Activin A, and senolytics have been proposed as a therapeutic approach. To test the role of Activin A, we induced hepatic expression of Activin A in a murine MASLD/MASH model. Surprisingly, overexpression of hepatic Activin A dramatically mitigated MASLD, reducing liver steatosis and inflammation as well as systemic fat accumulation, while improving insulin sensitivity. Further studies identified a dramatic decrease in the lipid-associated macrophages marker glycoprotein NMB (Gpnmb) by Activin A, and Gpnmb knockdown in the same model produced similar benefits and transcriptional changes to Activin A expression. These studies reveal a surprising protective role for Activin A in MASLD and the potential for SASP proteins to have context-specific beneficial effects. Moreover, they implicate both Activin A and Gpnmb as potential therapeutic targets for this condition.


Asunto(s)
Activinas , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Activinas/genética , Activinas/metabolismo , Proteínas del Ojo , Glicoproteínas de Membrana/genética , Factores de Transcripción
5.
Front Cardiovasc Med ; 10: 1116861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200978

RESUMEN

Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.

6.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37066875

RESUMEN

Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -ß (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and ß (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.


Asunto(s)
Hígado , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Ritmo Circadiano/fisiología , Comunicación
7.
Arterioscler Thromb Vasc Biol ; 43(1): 30-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453279

RESUMEN

BACKGROUND: Atherosclerosis is a medical urgency manifesting at the onset of hypercholesterolemia and is associated with aging. Activation of PPARγ (peroxisome proliferator-activated receptor γ) counteracts metabolic dysfunction influenced by aging, and its deacetylation displays an atheroprotective property. Despite the marked increase of PPARγ acetylation during aging, it is unknown whether PPARγ acetylation is a pathogenic contributor to aging-associated atherosclerosis. METHODS: Mice with constitutive deacetylation-mimetic PPARγ mutations on lysine residues K268 and K293 (2KR) in an LDL (low-density lipoprotein)-receptor knockout (Ldlr-/-) background (2KR:Ldlr-/-) were aged for 18 months on a standard laboratory diet to examine the cardiometabolic phenotype, which was confirmed in Western-type diet-fed 2KR:Ldlr+/- mice. Whole-liver RNA-sequencing and in vitro studies in bone marrow-derived macrophages were conducted to decipher the mechanism. RESULTS: In contrast to severe atherosclerosis in WT:Ldlr-/- mice, aged 2KR:Ldlr-/- mice developed little to no plaque, which was underlain by a significantly improved plasma lipid profile, with particular reductions in circulating LDL. The protection from hypercholesterolemia was recapitulated in Western-type diet-fed 2KR:Ldlr+/- mice. Liver RNA-sequencing analysis revealed suppression of liver inflammation rather than changes in cholesterol metabolism. This anti-inflammatory effect of 2KR was attributed to polarized M2 activation of macrophages. Additionally, the upregulation of core circadian component Bmal1 (brain and muscle ARNT-like 1), perceived to be involved in anti-inflammatory immunity, was observed in the liver and bone marrow-derived macrophages. CONCLUSIONS: PPARγ deacetylation in mice prevents the development of aging-associated atherosclerosis and hypercholesterolemia, in association with the anti-inflammatory phenotype of 2KR macrophages.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Animales , Ratones , PPAR gamma/metabolismo , Hipercolesterolemia/complicaciones , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Receptores de LDL/metabolismo , ARN , Ratones Noqueados , Ratones Endogámicos C57BL
8.
Sci Transl Med ; 14(672): eabp8309, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417485

RESUMEN

Necroptosis contributes to hepatocyte death in nonalcoholic steatohepatitis (NASH), but the fate and roles of necroptotic hepatocytes (necHCs) in NASH remain unknown. We show here that the accumulation of necHCs in human and mouse NASH liver is associated with an up-regulation of the "don't-eat-me" ligand CD47 on necHCs, but not on apoptotic hepatocytes, and an increase in the CD47 receptor SIRPα on liver macrophages, consistent with impaired macrophage-mediated clearance of necHCs. In vitro, necHC clearance by primary liver macrophages was enhanced by treatment with either anti-CD47 or anti-SIRPα. In a proof-of-concept mouse model of inducible hepatocyte necroptosis, anti-CD47 antibody treatment increased necHC uptake by liver macrophages and inhibited markers of hepatic stellate cell (HSC) activation, which is responsible for liver fibrogenesis. Treatment of two mouse models of diet-induced NASH with anti-CD47, anti-SIRPα, or AAV8-H1-shCD47 to silence CD47 in hepatocytes increased the uptake of necHC by liver macrophages and decreased markers of HSC activation and liver fibrosis. Anti-SIRPα treatment avoided the adverse effect of anemia found in anti-CD47-treated mice. These findings provide evidence that impaired clearance of necHCs by liver macrophages due to CD47-SIRPα up-regulation contributes to fibrotic NASH, and suggest therapeutic blockade of the CD47-SIRPα axis as a strategy to decrease the accumulation of necHCs in NASH liver and dampen the progression of hepatic fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Ratones Endogámicos C57BL , Cirrosis Hepática/complicaciones , Hepatocitos , Macrófagos , Antígeno CD47
9.
Nat Metab ; 4(4): 444-457, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361955

RESUMEN

Efferocytosis, the clearance of apoptotic cells (ACs) by macrophages, is critical for tissue resolution, with defects driving many diseases. Mechanisms of efferocytosis-mediated resolution are incompletely understood. Here, we show that AC-derived methionine regulates resolution through epigenetic repression of the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphatase Dusp4. We focus on two key efferocytosis-induced pro-resolving mediators, prostaglandin E2 (PGE2) and transforming growth factor beta 1 (TGF-ß1), and show that efferocytosis induces prostaglandin-endoperoxide synthase 2/cyclooxygenase 2 (Ptgs2/COX2), leading to PGE2 synthesis and PGE2-mediated induction of TGF-ß1. ERK1/2 phosphorylation/activation by AC-activated CD36 is necessary for Ptgs2 induction, but this is insufficient owing to an ERK-DUSP4 negative feedback pathway that lowers phospho-ERK. However, subsequent AC engulfment and phagolysosomal degradation lead to Dusp4 repression, enabling enhanced p-ERK and induction of the Ptgs2-PGE2-TGF-ß1 pathway. Mechanistically, AC-derived methionine is converted to S-adenosylmethionine, which is used by DNA methyltransferase-3A (DNMT3A) to methylate Dusp4. Bone-marrow DNMT3A deletion in mice blocks COX2/PGE2, TGF-ß1, and resolution in sterile peritonitis, apoptosis-induced thymus injury and atherosclerosis. Knowledge of how macrophages use AC-cargo and epigenetics to induce resolution provides mechanistic insight and therapeutic options for diseases driven by impaired resolution.


Asunto(s)
ADN Metiltransferasa 3A/metabolismo , Metionina , Factor de Crecimiento Transformador beta1 , Animales , Apoptosis , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Macrófagos/metabolismo , Metionina/metabolismo , Ratones , Prostaglandinas E/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
10.
Int Rev Cell Mol Biol ; 357: 21-33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33234243

RESUMEN

TAM family tyrosine kinase receptors including Tyro3, Axl, and MerTK are the key efferocytosis receptors presenting on antigen-presenting cell that mediate the clearance of apoptotic cells. They are thought to regulate inflammatory diseases by modulating inflammatory response and efferocytosis. Recent studies have revealed novel roles of TAM receptors in the biosynthesis of specialized pro-resolving mediators (SPMs) and inflammation resolution. In this chapter, we discuss the central roles of TAM signaling in atherosclerosis focusing on their regulation in efferocytosis and inflammation resolution and highlight the unique therapeutic potential of SPMs in blocking the progression of atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Animales , Aterosclerosis/patología , Aterosclerosis/terapia , Humanos , Ligandos , Tirosina Quinasa del Receptor Axl
11.
Aging (Albany NY) ; 12(20): 19828-19829, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33125343
13.
Cell Metab ; 31(5): 969-986.e7, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32259482

RESUMEN

Incomplete understanding of how hepatosteatosis transitions to fibrotic non-alcoholic steatohepatitis (NASH) has limited therapeutic options. Two molecules that are elevated in hepatocytes in human NASH liver are cholesterol, whose mechanistic link to NASH remains incompletely understood, and TAZ, a transcriptional regulator that promotes fibrosis but whose mechanism of increase in NASH is unknown. We now show that increased hepatocyte cholesterol upregulates TAZ and promotes fibrotic NASH. ASTER-B/C-mediated internalization of plasma membrane cholesterol activates soluble adenylyl cyclase (sAC; ADCY10), triggering a calcium-RhoA-mediated pathway that suppresses ß-TrCP/proteasome-mediated TAZ degradation. In mice fed with a cholesterol-rich NASH-inducing diet, hepatocyte-specific silencing of ASTER-B/C, sAC, or RhoA decreased TAZ and ameliorated fibrotic NASH. The cholesterol-TAZ pathway is present in primary human hepatocytes, and associations among liver cholesterol, TAZ, and RhoA in human NASH liver are consistent with the pathway. Thus, hepatocyte cholesterol contributes to fibrotic NASH by increasing TAZ, suggesting new targets for therapeutic intervention.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Colesterol/metabolismo , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
14.
Cell Metab ; 31(2): 406-421.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31839486

RESUMEN

Nonalcoholic steatohepatitis (NASH) is emerging as a leading cause of chronic liver disease. However, therapeutic options are limited by incomplete understanding of the mechanisms of NASH fibrosis, which is mediated by activation of hepatic stellate cells (HSCs). In humans, human genetic studies have shown that hypomorphic variations in MERTK, encoding the macrophage c-mer tyrosine kinase (MerTK) receptor, provide protection against liver fibrosis, but the mechanisms remain unknown. We now show that holo- or myeloid-specific Mertk targeting in NASH mice decreases liver fibrosis, congruent with the human genetic data. Furthermore, ADAM metallopeptidase domain 17 (ADAM17)-mediated MerTK cleavage in liver macrophages decreases during steatosis to NASH transition, and mice with a cleavage-resistant MerTK mutant have increased NASH fibrosis. Macrophage MerTK promotes an ERK-TGFß1 pathway that activates HSCs and induces liver fibrosis. These data provide insights into the role of liver macrophages in NASH fibrosis and provide a plausible mechanism underlying MERTK as a genetic risk factor for NASH fibrosis.


Asunto(s)
Cirrosis Hepática/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tirosina Quinasa c-Mer/fisiología , Proteína ADAM17/metabolismo , Animales , Línea Celular , Enfermedad Crónica , Humanos , Hígado/citología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas
15.
Hepatol Commun ; 3(9): 1221-1234, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31497743

RESUMEN

Nonalcoholic steatohepatitis (NASH) is emerging as a major public health issue and is associated with significant liver-related morbidity and mortality. At present, there are no approved drug therapies for NASH. The transcriptional coactivator with PDZ-binding motif (TAZ; encoded by WW domain-containing transcription regulator 1 [WWTR1]) is up-regulated in hepatocytes in NASH liver from humans and has been shown to causally promote inflammation and fibrosis in mouse models of NASH. As a preclinical test of targeting hepatocyte TAZ to treat NASH, we injected stabilized TAZ small interfering RNA (siRNA) bearing the hepatocyte-specific ligand N-acetylgalactosamine (GalNAc-siTAZ) into mice with dietary-induced NASH. As a preventative regimen, GalNAc-siTAZ inhibited inflammation, hepatocellular injury, and the expression of profibrogenic mediators, accompanied by decreased progression from steatosis to NASH. When administered to mice with established NASH, GalNAc-siTAZ partially reversed hepatic inflammation, injury, and fibrosis. Conclusion: Hepatocyte-targeted siTAZ is potentially a novel and clinically feasible treatment for NASH.

16.
Blood ; 133(7): 743-753, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30504459

RESUMEN

Tissue-type plasminogen activator (tPA) is a major mediator of fibrinolysis and, thereby, prevents excessive coagulation without compromising hemostasis. Studies on tPA regulation have focused on its acute local release by vascular cells in response to injury or other stimuli. However, very little is known about sources, regulation, and fibrinolytic function of noninjury-induced systemic plasma tPA. We explore the role and regulation of hepatocyte-derived tPA as a source of basal plasma tPA activity and as a contributor to fibrinolysis after vascular injury. We show that hepatocyte tPA is downregulated by a pathway in which the corepressor DACH1 represses ATF6, which is an inducer of the tPA gene Plat Hepatocyte-DACH1-knockout mice show increases in liver Plat, circulating tPA, fibrinolytic activity, bleeding time, and time to thrombosis, which are reversed by silencing hepatocyte Plat Conversely, hepatocyte-ATF6-knockout mice show decreases in these parameters. The inverse correlation between DACH1 and ATF6/PLAT is conserved in human liver. These findings reveal a regulated pathway in hepatocytes that contributes to basal circulating levels of tPA and to fibrinolysis after vascular injury.


Asunto(s)
Factor de Transcripción Activador 6/fisiología , Proteínas del Ojo/fisiología , Fibrinólisis/fisiología , Hepatocitos/patología , Trombosis/patología , Activador de Tejido Plasminógeno/farmacología , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Células Cultivadas , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Fibrinólisis/efectos de los fármacos , Fibrinolíticos/farmacología , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trombosis/tratamiento farmacológico , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Circ Res ; 123(11): e35-e47, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30571460

RESUMEN

RATIONALE: The mechanisms driving atherothrombotic risk in individuals with JAK2 V617F ( Jak2 VF) positive clonal hematopoiesis or myeloproliferative neoplasms are poorly understood. OBJECTIVE: The goal of this study was to assess atherosclerosis and underlying mechanisms in hypercholesterolemic mice with hematopoietic Jak2 VF expression. METHODS AND RESULTS: Irradiated low-density lipoprotein receptor knockout ( Ldlr-/-) mice were transplanted with bone marrow from wild-type or Jak2 VF mice and fed a high-fat high-cholesterol Western diet. Hematopoietic functions and atherosclerosis were characterized. After 7 weeks of Western diet, Jak2 VF mice showed increased atherosclerosis. Early atherosclerotic lesions showed increased neutrophil adhesion and content, correlating with lesion size. After 12 weeks of Western diet, Jak2 VF lesions showed increased complexity, with larger necrotic cores, defective efferocytosis, prominent iron deposition, and costaining of erythrocytes and macrophages, suggesting erythrophagocytosis. Jak2 VF erythrocytes were more susceptible to phagocytosis by wild-type macrophages and showed decreased surface expression of CD47, a "don't-eat-me" signal. Human JAK2VF erythrocytes were also more susceptible to erythrophagocytosis. Jak2 VF macrophages displayed increased expression and production of proinflammatory cytokines and chemokines, prominent inflammasome activation, increased p38 MAPK (mitogen-activated protein kinase) signaling, and reduced levels of MerTK (c-Mer tyrosine kinase), a key molecule mediating efferocytosis. Increased erythrophagocytosis also suppressed efferocytosis. CONCLUSIONS: Hematopoietic Jak2 VF expression promotes early lesion formation and increased complexity in advanced atherosclerosis. In addition to increasing hematopoiesis and neutrophil infiltration in early lesions, Jak2 VF caused cellular defects in erythrocytes and macrophages, leading to increased erythrophagocytosis but defective efferocytosis. These changes promote accumulation of iron in plaques and increased necrotic core formation which, together with exacerbated proinflammatory responses, likely contribute to plaque instability.


Asunto(s)
Aterosclerosis/genética , Eritrocitos/metabolismo , Janus Quinasa 2/genética , Macrófagos/metabolismo , Fagocitosis , Adulto , Anciano , Animales , Aterosclerosis/sangre , Aterosclerosis/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Citocinas/genética , Citocinas/metabolismo , Femenino , Hematopoyesis , Humanos , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neutrófilos/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Sci Signal ; 11(549)2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254055

RESUMEN

Inflammation resolution counterbalances excessive inflammation and restores tissue homeostasis after injury. Failure of resolution contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated by endogenous specialized proresolving mediators (SPMs), which are derived from long-chain fatty acids by lipoxygenase (LOX) enzymes. 5-LOX plays a critical role in the biosynthesis of two classes of SPMs: lipoxins and resolvins. Cytoplasmic localization of the nonphosphorylated form of 5-LOX is essential for SPM biosynthesis, whereas nuclear localization of phosphorylated 5-LOX promotes proinflammatory leukotriene production. We previously showed that MerTK, an efferocytosis receptor on macrophages, promotes SPM biosynthesis by increasing the abundance of nonphosphorylated, cytoplasmic 5-LOX. We now show that activation of MerTK in human macrophages led to ERK-mediated expression of the gene encoding sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), which decreased the cytosolic Ca2+ concentration and suppressed the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). This, in turn, reduced the activities of the mitogen-activated protein kinase (MAPK) p38 and the kinase MK2, resulting in the increased abundance of the nonphosphorylated, cytoplasmic form of 5-LOX and enhanced SPM biosynthesis. In a zymosan-induced peritonitis model, an inflammatory setting in which macrophage MerTK activation promotes resolution, inhibition of ERK activation delayed resolution, which was characterized by an increased number of neutrophils and decreased amounts of SPMs in tissue exudates. These findings contribute to our understanding of how MerTK signaling induces 5-LOX-derived SPM biosynthesis and suggest a therapeutic strategy to boost inflammation resolution in settings where defective resolution promotes disease progression.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Tirosina Quinasa c-Mer/metabolismo , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Calcio/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Inflamación , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Jurkat , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Neutrófilos/metabolismo , Peritonitis/metabolismo , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
19.
J Clin Invest ; 128(7): 2713-2723, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30108191

RESUMEN

Non-resolving inflammation drives the development of clinically dangerous atherosclerotic lesions by promoting sustained plaque inflammation, large necrotic cores, thin fibrous caps, and thrombosis. Resolution of inflammation is not merely a passive return to homeostasis, but rather an active process mediated by specific molecules, including fatty acid-derived specialized pro-resolving mediators (SPMs). In advanced atherosclerosis, there is an imbalance between levels of SPMs and proinflammatory lipid mediators, which results in sustained leukocyte influx into lesions, inflammatory macrophage polarization, and impaired efferocytosis. In animal models of advanced atherosclerosis, restoration of SPMs limits plaque progression by suppressing inflammation, enhancing efferocytosis, and promoting an increase in collagen cap thickness. This Review discusses the roles of non-resolving inflammation in atherosclerosis and highlights the unique therapeutic potential of SPMs in blocking the progression of clinically dangerous plaques.


Asunto(s)
Aterosclerosis/metabolismo , Inflamación/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Progresión de la Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/uso terapéutico , Metabolismo de los Lípidos , Lipooxigenasas/metabolismo , Modelos Cardiovasculares , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Transducción de Señal
20.
J Clin Invest ; 127(11): 4075-4089, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972541

RESUMEN

Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. Western diet-fed LDL receptor-deficient (Ldlr-/-) mice with myeloid-specific deletion of CaMKII had smaller necrotic cores with concomitantly thicker collagen caps. These lesions demonstrated evidence of enhanced efferocytosis, which was associated with increased expression of the macrophage efferocytosis receptor MerTK. Mechanistic studies revealed that CaMKIIγ-deficient macrophages and atherosclerotic lesions lacking myeloid CaMKIIγ had increased expression of the transcription factor ATF6. We determined that ATF6 induces liver X receptor-α (LXRα), an Mertk-inducing transcription factor, and that increased MerTK expression and efferocytosis in CaMKIIγ-deficient macrophages is dependent on LXRα. These findings identify a macrophage CaMKIIγ/ATF6/LXRα/MerTK pathway as a key factor in the development of necrotic atherosclerotic plaques.


Asunto(s)
Aterosclerosis/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Macrófagos/enzimología , Necrosis/enzimología , Placa Aterosclerótica/enzimología , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis , Células Cultivadas , Activación Enzimática , Expresión Génica , Humanos , Receptores X del Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fagocitosis , Placa Aterosclerótica/patología , Transducción de Señal , Tirosina Quinasa c-Mer/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...