Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(12): 15023-15031, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498850

RESUMEN

Interface-influenced crystallization is crucial to understanding the nucleation- and growth-dominated crystallization mechanisms in phase-change materials (PCMs), but little is known. Here, we find that composition vacancy can reduce the interface energy by decreasing the coordinate number (CN) at the interface. Compared to growth-dominated GeTe, nucleation-dominated Ge2Sb2Te5 (GST) exhibits composition vacancies in the (111) interface to saturate or stabilize the Te-terminated plane. Together, the experimental and computational results provide evidence that GST prefers (111) with reduced CN. Furthermore, the (8 - n) bonding rule, rather than CN6, in the nuclei of both GeTe and GST results in lower interface energy, allowing crystallization to be observed at the simulation time in general PCMs. In comparison to GeTe, the reduced CN in the GST nuclei further decreases the interface energy, promoting faster nucleation. Our findings provide an approach to designing ultrafast phase-change memory through vacancy-stabilized interfaces.

2.
Nanoscale ; 13(23): 10455-10461, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34137747

RESUMEN

128 Mb Phase Change Memory (PCM) chips show potential for many applications in artificial intelligence. A PCM cell often has a sandwich structure that consists of a TiN bottom electrode, a phase change material, and a top metal. TiN films prepared by atomic layer deposition have high thermal stability, and a WN coating layer on the TiN electrode can prevent oxidation in the electric and thermal field, achieving high endurance of the TiN electrode over 1011 cycles. In the phase change material of carbon-doped Ge2Te2Te5 (CGST), C-C chains and C clusters precipitate at the Ge2Te2Te5 (GST) grain boundaries, which effectively refines the grain size of GST. The C confinement enhances the Ge/Sb atomic migration barrier and suppresses the composition segregation in the Reset/Set operation process and the atomic relaxation of the CGST material. As a result, the endurance and conductivity-drift of the PCM chip were enhanced. Finally, stability over 5 × 108 cycles and 12 multi-level stable states were achieved in the 128 Mb PCM chip. This work presents a step towards the realization of large-scale and energy-efficient neuromorphic computing systems.

3.
Nanoscale ; 13(23): 10608-10609, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137760

RESUMEN

Correction for '12-state multi-level cell storage implemented in a 128 Mb phase change memory chip' by Zhitang Song et al., Nanoscale, 2021, DOI: 10.1039/d1nr00100k.

4.
ACS Appl Mater Interfaces ; 12(20): 23051-23059, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32340441

RESUMEN

Carbon (C)-doped Ge2Sb2Te5 material is a potential candidate in phase change random access memory (PCRAM) because of its superb thermal stability and ultrahigh cycle endurance. Unfortunately, the role and distribution evolution of C-dopant is still not fully understood, especially in practical industrial devices. In this report, with the aid of advanced spherical aberration corrected transmission electron microscopy, the mechanism of microstructure evolution manipulated by C-dopant is clearly defined. The grain-inner C atoms distinctly increase cationic migration energy barriers, which is the fundamental reason for promoting the thermal stability of metastable face-centered-cubic phase and postponing its transition to the hexagonal structure. By current pulses stimulation, the stochastic grain-outer C clusters tend to aggregate in the active area by breaking C-Ge bonding; thus, grain growth and elemental segregation are effectively suppressed to improve device reliability, for example, lower SET resistance, shorter SET time, and enlarged RESET/SET ratio. In short, the visual distribution variations of C-dopant can manipulate the performance of the PCRAM device, having much broader implications for optimizing its microstructure transition and understanding C-doped material system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...