Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
J Transl Med ; 22(1): 704, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080693

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been implicated in the development and progression of gastric cancer (GC). However, it remains unclear whether dysregulated circRNA affects immune escape and the efficacy of immunotherapy in GC. Our aim is to investigate the molecular mechanism of circRNA affecting GC immunotherapy and identify effective molecular therapeutic targets. METHODS: The differential expression profile of circRNAs was established through circRNA sequencing, comparing three paired GC tissues with their adjacent non-cancerous gastric tissues. The expression level of circRHBDD1 in GC tissues was then assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological characteristics of circRHBDD1 were verified through a series of experiments, including agarose gel electrophoresis assays, RNase R treatment, and actinomycin D experiments. The prognostic value of circRHBDD1 in GC was evaluated by conducting both univariate and multivariate survival analyses. Furthermore, loss- and gain-of-function approaches were utilized to investigate the impact of circRHBDD1 on GC immune escape. RNA-sequencing, immunoprecipitation, flow cytometry, and methylated RNA immunoprecipitation (meRIP) analysis were performed to elucidate the underlying molecular mechanisms. RESULTS: We discovered that circRHBDD1 exhibited remarkably high expression levels in GC tissues and cell lines. Notably, the high expression of circRHBDD1 was significantly correlated with poor overall survival and disease-free survival among GC patients. Both in vitro and in vivo experiments revealed that circRHBDD1 upregulated the expression of PD-L1 and impeded the infiltration of CD8+ T cells. Further, we found that circRHBDD1 binds to IGF2BP2, disrupting the interaction between E3 ligase TRIM25 and IGF2BP2, and ultimately inhibiting IGF2BP2 ubiquitination and degradation. Intriguingly, IGF2BP2 enhances PD-L1 mRNA stability through m6A modification. Additionally, we developed Poly (lactide-co-glycolic acid) (PLGA)-Polyethylene glycol (PEG)-based nanoparticles loaded with circRHBDD1 siRNA. In vivo experiments validated that the combination of PLGA-PEG(si-circRHBDD1) and anti-PD-1 offers a safe and efficacious nano-drug regimen for cancer immunotherapy. CONCLUSION: Our results demonstrated that circRHBDD1 promoted GC immune escape by upregulating the expression of PD-L1 and reprogramming T cell-mediated immune response. Inhibition of circRHBDD1 expression could potentially enhance the response of GC patients to immunotherapy, thus improving treatment outcomes. Additionally, the development of a nanodrug delivery system provides a feasible approach for future clinical applications.


Asunto(s)
Antígeno B7-H1 , ARN Circular , Proteínas de Unión al ARN , Transducción de Señal , Neoplasias Gástricas , Escape del Tumor , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Línea Celular Tumoral , Antígeno B7-H1/metabolismo , Masculino , Femenino , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Pronóstico
2.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3548-3551, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041126

RESUMEN

An OSMAC strategy was used to study secondary metabolites and anti-inflammatory activities of the endophytic fungus Penicillium herquei JX4 hosted in Ceriops tagal. The PDB ferment of fungus P. herquei JX4 was isolated, purified, and identified by using silica gel column chromatography, gel column chromatography, octadecylsilyl(ODS) column chromatography, and semi-preparative high-performance liquid chromatography. Two new pinophol derivatives, pinophol H(1) and pinophol I(2) were isolated and identified, and they were evaluated in terms of the inhibitory activities against the nitric oxide(NO) production induced by lipopolysaccharide(LPS) in mouse macrophage RAW264.7 cells. The results showed that compound 1 had significant inhibitory activity on NO production, with an IC_(50) value of 8.12 µmol·L~(-1).


Asunto(s)
Óxido Nítrico , Penicillium , Penicillium/química , Ratones , Animales , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Endófitos/química , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química
3.
Int J Gen Med ; 17: 3181-3192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049830

RESUMEN

Objective: Analyze risk factors for cardiac surgery-associated acute kidney injury (CSA-AKI) in adults and establish a nomogram model for CSA-AKI based on plasma soluble urokinase-type plasminogen activator receptor (suPAR) and clinical characteristics. Methods: In a study of 170 patients undergoing cardiac surgery with cardiopulmonary bypass, enzyme-linked immunosorbent assay (ELISA) measured plasma suPAR levels. Multivariable logistic regression analysis identified risk factors associated with CSA-AKI. Subsequently, the CSA-AKI nomogram model was developed using R software. Predictive performance was evaluated using a receiver operating characteristic (ROC) curve and the area under the curve (AUC). Internal validation was performed through the Bootstrap method with 1000 repeated samples. Additionally, decision curve analysis (DCA) assessed the clinical applicability of the model. Results: Multivariable logistic regression analysis revealed that being male, age ≥ 50 years, operation time ≥ 290 minutes, postoperative plasma suPAR at 2 hours, and preoperative left ventricular ejection fraction (LVEF) were independent risk factors for CSA-AKI. Employing these variables as predictive factors, a nomogram model was constructed, an ROC curve was generated, and the AUC was computed as 0.817 (95% CI 0.726-0.907). The calibration curve indicated the accuracy of the model, and the results of DCA demonstrated that the model could benefit the majority of patients. Conclusion: Being male, age ≥ 50 years, operation time ≥ 290 minutes, low preoperative LVEF, and elevated plasma suPAR at 2 hours are independent risk factors for CSA-AKI. The nomogram model established based on these risk factors has high accuracy and clinical value, serving as a predictive tool for assessing the risk of CSA-AKI.

4.
Nat Prod Res ; : 1-7, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949631

RESUMEN

Seven polyketides, including an undescribed depsidone (1) and six previously reported 3,6,8-trihydroxy-1-methylxanthone (2), 7-hydroxy-2-(2-hydroxypropyl)-5-methylchromone (3), methyl3-chloro-6-hydroxy-2-(4-hy-droxy-2-methoxy-6-methylphenoxy)-4- methoxybenzoate (4), xylarianin A (5), 4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydro-xymethyl-2-cyclohexen-1-one (6) and alternariol (7), have been isolated from cultures of the mangrove-derived fungus Penicillium robsamsonii HNNU0006. The structure of compound 1 was elucidated by extensive spectroscopic analysis and X-ray crystallography. Furthermore, all the compounds were evaluated their cytotoxic activities, and compounds 1 and 7 showed weak cytotoxicity against two cell lines Vero and A549 with IC50 values ranging from 95.6 and 296.5 µM, relative to the positive control Etoposide phosphate with IC50 values of 24.5 and 18.7 µM, respectively.

5.
Int J Antimicrob Agents ; 64(2): 107258, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914142

RESUMEN

Tandem amplification of carbapenemase genes increases gene copy number and enhances carbapenem resistance. These amplifications are often heterogeneous, transient, and located on plasmids, which also contribute to heteroresistance. Amplification of encoding genes is especially important for enzymes with low hydrolysis activity, which are often overlooked. Here, we reported an intrinsic oxacillinase oxaAb amplification flanked by ISAba1. The amplification is in the chromosome and contains up to 25 repeats. We provided genomic, transcriptomic, and proteomic evidence that the amplification resulted in oxacillinase overproduction. Notably, no point mutations of oxaAb were found during the amplification process. Strains of Acinetobacter baumannii with intrinsic amplified or external transformed ISAba1-oxaAb exhibited higher meropenem hydrolysis activity. Furthermore, the number of repeats in the amplification decreased gradually over a period of 21 d cultured with carbapenem withdrawal. However, upon re-exposure to meropenem, the ISAba1 flanked oxaAb responded rapidly, with repeat numbers reaching or exceeding pre-carbapenem withdrawal levels within 24 h. Taken together, these findings suggest that ISAba1-mediated gene amplification and overproduction of intrinsic low-activity oxacillinase oxaAb resulted in carbapenem resistance.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Carbapenémicos , beta-Lactamasas , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , beta-Lactamasas/genética , Carbapenémicos/farmacología , Antibacterianos/farmacología , Amplificación de Genes , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Humanos , Meropenem/farmacología , Elementos Transponibles de ADN/genética
6.
Opt Express ; 32(10): 16591-16610, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858862

RESUMEN

Non-uniformity is a long-standing problem that significantly degrades infrared images through fixed pattern noise (FPN). Existing scene-based algorithms for non-uniformity correction (NUC) effectively eliminate stripe FPN assuming consistent inter-frame non-uniformity. However, they are ineffective in handling spatially continuous optical FPN. In this paper, a scene-based dual domain correction approach is proposed to address the non-uniformity problem by simultaneously removing stripe and optics-caused FPN. We achieve this through gain correction in the frequency domain and offset correction in the spatial domain. To remove stripes, we approximate the desired image using a guided filter and iteratively update the bias correction parameters frame by frame. For optics-caused noise removal, we separate low frequency noise from the scene using Fourier transform and update the gain correction parameters accordingly. To mitigate ghost artifacts, a combined strategy is introduced to adaptively adjusts learning rates and weights during the updating stage. Comprehensive evaluations demonstrate that our proposed approach outperforms compared methods in both real and simulated non-uniformity infrared videos.

7.
Front Immunol ; 15: 1371379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881888

RESUMEN

SMARCA4-deficient undifferentiated tumor (SMARCA4-dUT) is a devastating subtype of thoracic tumor with SMARCA4 inactivation and is characterized by rapid progression, poor prognosis, and high risk of postoperative recurrence. However, effective treatments for SMARCA4-dUT are lacking. Herein, we describe a patient with SMARCA4-dUT who exhibited an impressive response to the anti-programmed cell death protein-1 (PD-1) antibody (tislelizumab) in combination with conventional chemotherapy (etoposide and cisplatin). To the best of our knowledge, this is the first case of SMARCA4-dUT treated with chemotherapy, comprising etoposide and cisplatin, combined with anti-PD-1 inhibitors. Immunotherapy combined with etoposide and cisplatin may be a promising strategy to treat SMARCA4-dUT.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , ADN Helicasas , Factores de Transcripción , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , ADN Helicasas/genética , ADN Helicasas/deficiencia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factores de Transcripción/genética , Proteínas Nucleares/genética , Proteínas Nucleares/deficiencia , Etopósido/uso terapéutico , Etopósido/administración & dosificación , Masculino , Cisplatino/uso terapéutico , Cisplatino/administración & dosificación , Resultado del Tratamiento , Femenino
8.
Phytomedicine ; 130: 155626, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850631

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a serious cardiovascular disease, which presents different pathophysiological changes with the prolongation of the disease. Compound danshen dripping pills (CDDP) has obvious advantages in MI treatment and widely used in the clinic. However, the current studies were mostly focused on the endpoint of CDDP intervention, lacking the dynamic attention to the disease process. It is of great value to establish a dynamic research strategy focused on the changes in pharmacodynamic substances for guiding clinical medication more precisely. PURPOSE: It is aimed to explore the dynamic regulating pattern of CDDP on MI based on metabolic trajectory analysis, and then clarify the variation characteristic biomarkers and pharmacodynamic substances in the intervention process. METHODS: The MI model was successfully prepared by coronary artery left anterior descending branch ligation, and then CDDP intervention was given for 28 days. Endogenous metabolites and the components of CDDP in serum were measured by LC/MS technique simultaneously to identify dynamic the metabolic trajectory and screen the characteristic pharmacodynamic substances at different points. Finally, network pharmacology and molecular docking techniques were used to simulate the core pharmacodynamic substances and core target binding, then validated at the genetic and protein level by Q-PCR and western blotting technology. RESULTS: CDDP performed typical dynamic regulation features on metabolite distribution, biological processes, and pharmacodynamic substances. During 1-7 days, it mainly regulated lipid metabolism and inflammation, the Phosphatidylcholine (PC(18:1(9Z/18:1(9Z)) and Sphingomyelin (SM(d18:1/23:1(9Z)), SM(d18:1/24:1(15Z)), SM(d18:0/16:1(9Z))) were the main characteristic biomarkers. Lipid metabolism was the mainly regulation pathway during 14-21 days, and the characteristic biomarkers were the Lysophosphatidylethanolamine (LysoPE(0:0/20:0), PE-NMe2(22:1(13Z)/15:0)) and Sphingomyelin (SM(d18:1/23:1(9Z))). At 28 days, in addition to inflammatory response and lipid metabolism, fatty acid metabolism also played the most important role. Correspondingly, Lysophosphatidylcholine (LysoPC(20:0/0:0)), Lysophosphatidylserine (LPS(18:0/0:0)) and Fatty acids (Linoelaidic acid) were the characteristic biomarkers. Based on the results of metabolite distribution and biological process, the characteristic pharmacodynamic substances during the intervention were further identified. The results showed that various kinds of Saponins and Tanshinones as the important active ingredients performed a long-range regulating effect on MI. And the other components, such as Tanshinol and Salvianolic acid B affected Phosphatidylcholine and Sphingomyelin through Relaxin Signaling pathway during the early intervention. Protocatechualdehyde and Rosmarinic acid affected Lysophosphatidylethanolamine and Sphingomyelin through EGFR Tyrosine kinase inhibitor resistance during the late intervention. Tanshinone IIB and Isocryptotanshinone via PPAR signaling pathway affected Lysophosphatidylcholine, Lysophosphatidylserine, and Fatty acids. CONCLUSION: The dynamic regulating pattern was taken as the entry point and constructs the dynamic network based on metabolic trajectory analysis, establishes the dynamic correlation between the drug-derived components and the endogenous metabolites, and elucidates the characteristic biomarkers affecting the changes of the pharmacodynamic indexes, systematically and deeply elucidate the pharmacodynamic substance and mechanism of CDDP on MI. It also enriched the understanding of CDDP and provided a methodological reference for the dynamic analysis of complex systems of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Infarto del Miocardio , Salvia miltiorrhiza , Medicamentos Herbarios Chinos/farmacología , Salvia miltiorrhiza/química , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Animales , Masculino , Farmacología en Red , Ratas Sprague-Dawley , Biomarcadores/metabolismo , Ratas , Lisofosfatidilcolinas , Canfanos , Panax notoginseng
9.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723991

RESUMEN

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Asunto(s)
Biopelículas , Ácidos Indolacéticos , Microalgas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Microalgas/efectos de los fármacos , Microalgas/fisiología , Reguladores del Crecimiento de las Plantas/farmacología
10.
Clin Transl Oncol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703335

RESUMEN

BACKGROUND: Cuproptosis, as a unique modality of regulated cell death, requires the involvement of ubiquitin-binding enzyme UBE2D2. However, the prognostic and immunotherapeutic values of UBE2D2 in pan-cancer remain largely unknown. METHODS: Using UCSC Xena, TIMER, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) databases, we aimed to explore the differential expression pattern of UBE2D2 across multiple cancer types and to evaluate its association with patient prognosis, clinical features, and genetic variations. The association between UBE2D2 and immunotherapy response was assessed by gene set enrichment analysis, tumor microenvironment, immune gene co-expression and drug half maximal inhibitory concentration (IC50) analysis. RESULTS: The mRNA and protein levels of UBE2D2 were markedly elevated in most cancer types, and UBE2D2 exhibited prognostic significance in liver hepatocellular carcinoma (LIHC), kidney chromophobe (KICH), uveal melanomas (UVM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and kidney renal papillary cell carcinoma (KIRP). UBE2D2 expression was correlated with clinical features, tumor mutation burden, microsatellite instability, and anti-tumor drug resistance in several tumor types. Gene enrichment analysis showed that UBE2D2 was significantly associated with immune-related pathways. The expression level of UBE2D2 was correlated with immune cell infiltration, including CD4 + T cells、Macrophages M2、CD8 + T cells in pan-cancer. PDCD1, CD274 and CTLA4 expression levels were positively correlated with UBE2D2 level in multiple cancers. CONCLUSIONS: We comprehensively investigated the potential value of UBE2D2 as a prognostic and immunotherapeutic predictor for pan-cancer, providing a novel insight for cancer immunotherapy.

11.
Heliyon ; 10(7): e26791, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586373

RESUMEN

Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.

12.
World J Clin Oncol ; 15(3): 434-446, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38576590

RESUMEN

BACKGROUND: The ubiquitin-proteasome pathway (UPP) has been proven to play important roles in cancer. AIM: To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes. METHODS: In this study, UPP-related E1, E2, E3, deubiquitylating enzyme, and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based on the Cancer Genome Atlas liver cancer cases. RESULTS: Five genes (including autophagy related 10, proteasome 20S subunit alpha 8, proteasome 20S subunit beta 2, ubiquitin specific peptidase 17 like family member 2, and ubiquitin specific peptidase 8) were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer. Among training, validation, and Gene Expression Omnibus sets, the overall survival differed significantly between the high-risk and low-risk groups. The expression of the five genes was significantly associated with immunocyte infiltration, tumor stage, and postoperative recurrence. A total of 111 differentially expressed genes (DEGs) were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways. Cell division cycle 20, Kelch repeat and BTB domain containing 11, and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival. CONCLUSION: We have constructed a prognosis predictive model in patients with liver cancer, which contains five genes that associate with immunocyte infiltration, tumor stage, and postoperative recurrence.

13.
Phys Chem Chem Phys ; 26(15): 11958-11967, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573215

RESUMEN

Monolayer (ML) Janus III-VI compounds have attracted the use of multiple competitive platforms for future-generation functional electronics, including non-volatile memories, field effect transistors, and sensors. In this work, the electronic and interfacial properties of ML Ga2STe-metal (Au, Ag, Cu, and Al) contacts are systematically investigated using first-principles calculations combined with the non-equilibrium Green's function method. The ML Ga2STe-Au/Ag/Al contacts exhibit weak electronic orbital hybridization at the interface, while the ML Ga2STe-Cu contact exhibits strong electronic orbital hybridization. The Te surface is more conducive to electron injection than the S surface in ML Ga2STe-metal contact. Quantum transport calculations revealed that when the Te side of the ML Ga2STe is in contact with Au, Ag and Cu electrodes, p-type Schottky contacts are formed. When in contact with the Al electrode, an n-type Schottky contact is formed with an electron SBH of 0.079 eV. When the S side of ML Ga2STe is in contact with Au and Al electrodes, p-type Schottky contacts are formed, and when it is in contact with Ag and Cu electrodes, n-type Schottky contacts are formed. Our study will guide the selection of appropriate metal electrodes for constructing ML Ga2STe devices.

14.
Fitoterapia ; 175: 105906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479622

RESUMEN

Nine metabolites, including three undescribed alkaloids pyripyropenes VW (1-2), penicioxa A (4), two previously reported pyripyropene A (3), oxaline (5), three grisephenone-type xanthone derivatives (6-8), and a diphenyl ether derivative 4-chloro-7,4'-dihydroxy-5,2'-dimethoxy-2-methylformate-6'-methybenzophone (9), were isolated from cultures of the mangrove-derived fungus Penicillium robsamsonii HNNU0006. Their structures were determined by spectroscopic analysis, ECD calculations, together with DP4+ probability analysis. Furthermore, all the isolated compounds were tested for cytotoxicity and anti-phytopathogenic fungal activities. Compounds 6-8 showed moderate cytotoxicity against tumor cell lines A549, with IC50 values ranging from 5.68 ± 0.21 to 9.71 ± 0.34 µg/mL, respectively.


Asunto(s)
Alcaloides , Penicillium , Penicillium/química , Estructura Molecular , Humanos , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Alcaloides/química , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/química , China , Rhizophoraceae/microbiología
15.
Front Pharmacol ; 15: 1387592, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510650

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2022.918732.].

16.
Lipids Health Dis ; 23(1): 81, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509584

RESUMEN

BACKGROUND: Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRß + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRß + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRß + cells remains undetermined in vivo. METHODS: New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRß + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRß + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRß + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS: Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRß + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRß + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRß + cell Epas1-deficient mice. CONCLUSION: The new findings in this study support that, in contrast to HIF1α, PDGFRß + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.


Asunto(s)
Tejido Adiposo Blanco , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Obesidad , Animales , Ratones , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
17.
IET Syst Biol ; 18(1): 23-39, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38318939

RESUMEN

Primary liver cancer is the sixth most common cancer and the third leading cause of cancer-related death worldwide. The role of the 'Other' subfamily of HECT E3 ligases (E3s) in hepatocellular carcinoma (HCC) remains unknown. The expression of the 'Other' HECT E3s was performed using The Cancer Genome Atlas (TCGA) data, and the authors found that the 'Other' HECT E3s were differentially expressed in HCC. Prognostic values were assessed using the Kaplan-Meier method and indicated that the high expressions of HECTD2, HECTD3, and HACE1 were associated with a worse clinical prognosis of HCC patients. The expression of HECTD2 was significantly correlated with the infiltration of CD4+ T cells and neutrophils. The levels of HECTD3 and HACE1 were notably related to the dendritic cells and memory B cells infiltrated in HCC. In addition, the three previously mentioned genes have shown to be associated with immune checkpoint genes, such as FOXP3, CCR8, STAT5B, TGFB1 and TIM-3. Moreover, HECTD2 could promote the proliferative activity, cell migration and invasive ability of HCC cells. Collectively, the authors' study demonstrated that HECTD2 was a novel immune-related prognostic biomarker for HCC, providing new insight into the treatment and prognosis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Ubiquitina-Proteína Ligasas/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Biomarcadores de Tumor , Microambiente Tumoral
18.
Nat Prod Res ; 38(10): 1711-1718, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37259794

RESUMEN

Chemical investigation of a culture broth from the marine-derived fungus Pyrrhoderma noxium HNNU0524 yielded two new compounds including a drimane-type sesquiterpenoid named pyrrnoxin A (1) and a benzoic acid derivative, pyrrnoxin B (5), together with three related known analogues (2-4). The chemical structures of 1 and 5 were determined by detailed analysis of spectroscopic data, single-crystal X-ray crystallography, quantum mechanics-based DP4+ and ECD calculations. Compounds 2 and 3 moderately inhibited NO production of lipopolysaccharide-induced microglia cells BV2 with IC50 values of 26.6 and 60.5 µM, respectively.


Asunto(s)
Basidiomycota , Sesquiterpenos Policíclicos , Sesquiterpenos , Estructura Molecular , Sesquiterpenos/química , Antiinflamatorios/farmacología
19.
Int Immunopharmacol ; 126: 111282, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061117

RESUMEN

OBJECTIVE: The signaling lymphocytic activation molecule family of receptors (SLAMF) is involved in the activation of T cells and plays important roles in the pathogenesis of autoimmune diseases. The purpose of this study is to observe the expression of SLAMF3 on CD4 + T cells and its effect on the differentiation of T helper 17 (Th17) in primary Sjögren's syndrome (pSS). Furthermore, we found iguratimod (IGU) could effectively reverse the aberrant Th17 differentiation through JAK1/STAT3 signaling. METHODS: Peripheral blood mononuclear cells from 40 pSS and 40 healthy control subjects were enrolled for analysis of expression of SLAMF3 on CD4 + T and Th17 cells by flow cytometry. Serum IL-17 and SLAMF3 were detected by ELISA assay. Labial biopsies from 20 pSS patients and 20 non-pSS controls were performed immunohistochemical for staining expression of CD4, IL-17, and SLAMF3. Under the priming conditions with anti-CD3/CD28 or CD3/SLAMF3 antibodies on CD4 + T cells extracted from pSS and controls, the proportion of Th17 cells in CD4 + T cells and the amount of soluble IL-17A were assessed by flow cytometry and ELISA. Furthermore, RNA sequencing was performed for the transcriptomics study. Additionally, RNA level of RORγt and IL-17A and the protein level of RORγt, p-JAK1 and p-STAT3, were detected by real-time PCR and western blot. RESULTS: The expression levels of SLAMF3 on CD4 + T and Th17 cells in the peripheral blood and salivary glands in pSS patients were significantly elevated than that in control groups. The serum IL-17A and SLAMF3 in pSS patients were much higher compared with the control group. Although co-stimulation of CD3/SLAMF3 could promote CD4 + T cells differentiate into Th17 cells both in pSS and controls, the CD4 + T cells from pSS have a more sensitive response in Th17 differentiation with the SLAMF3 stimulation. Transcriptomics results showed the CD3/SLAMF3 stimulation caused the activation of Th17 signaling and JAK1/STAT3 pathway. Quantitative PCR and western blotting confirmed the IGU (iguratimod), which is a safe clinical drug in treatment of autoimmune diseases, effectively reversed the increased Th17 proportion, the expression levels of RORγt, pJAK1, and pSTAT3 caused by CD3/SLAMF3 stimulation. CONCLUSION: SLAMF3 upregulates Th17 cell differentiation of CD4 + T cells and IL-17A secretion through enriching RORγt and activating the transcriptomics participating in the pathogenesis of primary Sjögren's syndrome. IGU could inhibit the process through this therapeutic target in pSS.


Asunto(s)
Interleucina-17 , Síndrome de Sjögren , Humanos , Diferenciación Celular , Interleucina-17/metabolismo , Janus Quinasa 1/metabolismo , Leucocitos Mononucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Th17
20.
Shock ; 61(3): 414-423, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150357

RESUMEN

ABSTRACT: Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.


Asunto(s)
Choque Hemorrágico , Ratas , Animales , Choque Hemorrágico/metabolismo , Músculo Liso Vascular , Metaloproteinasa 2 de la Matriz/farmacología , Ganglio Estrellado/metabolismo , Fenotipo , Autofagia , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA