Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 106(1): 93-100, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34340563

RESUMEN

Rice false smut caused by Ustilaginoidea virens is one of the most devastating fungal diseases of rice panicles worldwide. In this study, two novel molecular markers derived from single nucleotide polymorphism-rich genomic DNA fragments and a previously reported molecular marker were used for analyzing the genetic diversity and population structure of 167 U. virens isolates collected from nine areas in the Sichuan-Chongqing region, China. A total of 62 haplotypes were identified, and a few haplotypes with high frequency were found and distributed in two to three areas, suggesting gene flow among different geographical populations. All isolates were divided into six genetic groups. Groups I and VI were the largest, with 61 and 48 isolates, respectively. The pairwise FST values showed significant genetic differentiation among all compared geographical populations. Analysis of molecular variance showed that intergroup genetic variation accounted for 40.17% of the total genetic variation, while 59.83% of genetic variation came from intragroup genetic variation. The unweighted pair-group method with arithmetic means dendrogram and population structure revealed that the genetic composition of isolates collected from Santai, Nanchong, Yongchuan, and Wansheng dominated by the same genetic subgroup was different from those collected from other areas. In addition, genetic recombination was found in a few isolates. These findings will help to improve the strategies for rice false smut management and resistance breeding, such as evaluating breeding lines with different isolates or haplotypes at different elevations and landforms.


Asunto(s)
Hypocreales , Oryza , Variación Genética , Hypocreales/genética , Enfermedades de las Plantas
2.
Plant Dis ; 104(4): 1201-1206, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32065567

RESUMEN

Sclerotinia sclerotiorum is one of the most devastating fungal plant pathogens of oilseed Brassica and is distributed worldwide. In particular, Sclerotinia stem rot has always been a serious threat to rapeseed production in Chongqing City, China. In this study, simple sequence repeat (SSR) markers and mycelial compatibility groups (MCGs) were used to characterize the population structure of 90 geographic isolates of S. sclerotiorum collected from rapeseed in nine counties of Chongqing. A total of 52 microsatellite haplotypes were identified, and a few haplotypes were found with high frequency. Gene diversity ranged from 0.1570 to 0.4700 in nine populations. A constructed unweighted pair group with arithmetic mean dendrogram based on Nei genetic distance and a STRUCTURE analysis revealed that the genetic composition of the isolates collected in the five counties located in western Chongqing are different from those collected in the two eastern counties, suggesting that breed lines should be cultivated in both the western and eastern regions to effectively evaluate resistance levels. A total of 47 MCGs were identified, and 72% of the MCGs was represented by single isolates. Seven of 13 MCGs that included at least two isolates contained isolates from only one county. SSR haplotypes were not correlated with MCGs. A subset of 34 isolates were inoculated on rapeseed stems, and the aggressiveness showed variation. This research revealed the population genetic structure and aggressiveness of this pathogen in Chongqing, and the results will help to develop disease management and resistance screening strategies.


Asunto(s)
Ascomicetos , Brassica napus , Brassica rapa , China , Enfermedades de las Plantas
3.
Mol Plant Pathol ; 20(7): 895-906, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074170

RESUMEN

Sclerotinia sclerotiorum is a devastating necrotrophic fungal pathogen that infects over 400 species of plants worldwide. Reactive oxygen species (ROS) modulations are critical for the pathogenic development of S. sclerotiorum. The fungus applies enzymatic and non-enzymatic antioxidants to cope with the oxidative stress during the infection processes. Survival factor 1 was identified and characterized to promote survival under conditions of oxidative stress in Saccharomyes cerevisiae. In this research, a gene named SsSvf1 was predicted to encode a survival factor 1 homologue in S. sclerotiorum. SsSvf1 transcripts showed high expression levels in hyphae under oxidative stress. Silencing of SsSvf1 resulted in increased sensitivity to oxidative stress in culture and increased levels of intracellular ROS. Transcripts of SsSvf1 showed a dramatic increase during the initial stage of infection and the gene-silenced strains displayed reduced virulence on oilseed rape and Arabidopsis thaliana. Inhibition of plant ROS production partially restores virulence of SsSvf1 gene-silenced strains. SsSvf1 gene-silenced strains exhibited normal oxalate production, but were impaired in compound appressorium formation and cell wall integrity. The results suggest that SsSvf1 is involved in coping with ROS during fungal-host interactions and plays a crucial role in the pathogenicity of S. sclerotiorum.


Asunto(s)
Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Proteínas Fúngicas/metabolismo , Estrés Oxidativo , Secuencia de Aminoácidos , Ascomicetos/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Proteínas Fúngicas/química , Silenciador del Gen/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Presión Osmótica , Estrés Oxidativo/efectos de los fármacos , Virulencia/efectos de los fármacos , Vitamina K 3/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA