Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 26(35): 36074-36075, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31724129

RESUMEN

Unfortunately, the original version of this article contained two mistakes.

2.
Chemosphere ; 221: 834-840, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30684781

RESUMEN

Microplastics have been a prevalent and persistent contamination problem in the global aquatic environment. In particular, microplastics that can adsorb persistent organic pollutants (POPs) and therefore transfer these POPs to organisms in the aquatic environment have received much attention. In this study, an investigation of microplastics in the surface water of the Feilaixia Reservoir (Guangdong Province, China), which is an important part of people's daily lives in Guangdong Province was carried out, mainly focusing on the characteristics and spatial distribution of microplastics, as well as microplastics and their adsorded PAHs in the surface water of the Feilaixia Reservoir were investigated. The average abundance of microplastics in the surface water of the Feilaixia Reservoir was 0.56 ±â€¯0.45 items/m3. Six kinds of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), expanded polystyrene (EPS), polyvinyl chloride (PVC) and polyethylene terephthalate (PET), were identified, among which PP (52.31%) and PE (27.39%) were the major compositions. Four shapes of microplastics, i.e., foams, films, fragments and fibers were found, and films (37.78%) being the main shape. The most common typical size of the plastic particles ranged from 0.6 to 2 mm (41.36%). The total concentration of the sixteen PAHs carried on the EPS, PE and PP microplastics ranged from 282.4 to 427.3 ng/g; chrysene, benzo [ghi] perylene, and phenanthrene were abundant in the samples, at concentrations of 39.5-89.6 ng/g, 34.6-56.8 ng/g and 25.6-45.6 ng/g, respectively. Based on the ratios of the PAH isomers (Flut/Py < 1 and Phe/Ant >10), it was speculated that the source of the PAHs may be derived from the imperfect combustion of fossil fuels.


Asunto(s)
Plásticos/química , Hidrocarburos Policíclicos Aromáticos/química , Ríos , Contaminantes Químicos del Agua/química , Adsorción , China , Monitoreo del Ambiente , Combustibles Fósiles/efectos adversos , Hidrocarburos Policíclicos Aromáticos/análisis
3.
Sci Total Environ ; 644: 375-381, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981986

RESUMEN

Microplastics, as emerging contaminants in the global environment, have become a cause for concern for both academics and the public. The present understanding of microplastic pollution is primarily focused on marine environments, and less attention has been given to freshwater environments, in particular, to urban rivers. In this study, microplastics were sampled from surface water and sediments in 14 sites located in the lower course of the Pearl River. These sampling sites are located along Guangzhou of South China, with built-up areas being the dominant land use. The abundances of microplastics in surface water and sediments ranged from 379 to 7924 items·m-3 and 80 to 9597 items·kg-1, respectively. Polyethylene and polypropylene were the common types of microplastics, together accounting for 64.3% and 73.8% of surface water and sediment samples, respectively. Fibers were the dominant microplastic shapes in both water and sediment samples. The abundances of microplastics varied in surface water and sediments with each site, which might be affected by multiple factors. Our results indicated that wastewater treatment plants (WWTP) could reduce microplastics from municipal sewage which was finally discharged into the Pearl River along Guangzhou.

4.
Sci Total Environ ; 628-629: 740-747, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29454214

RESUMEN

Plastic debris represents one of the most prevalent and persistent pollution problems in the marine environment. In particular, microplastics that are mainly degraded from larger plastic debris have become a growing environmental concern. However, studies on the degradation of plastics in the aquatic environment that hydrobios reside in have been limited, while several studies regarding the degradation of plastics have been conducted under outdoor or accelerated weathering conditions. Thus, observation of the degradation of three types of virgin plastic pellets exposed to UV irradiation in three different environments (i.e., simulated seawater, ultrapure water, and a waterless (air) condition) was carried out. Data on the changes in physical and chemical properties were collected. The FTIR spectra showed that hydroxyl groups and carbonyl groups developed in three types of weathered plastic pellets under the air and ultrapure water environmental conditions after 3months of UV irradiation, while only carbonyl groups were found in plastic pellets in the simulated seawater environment. In contrast, the Raman spectra showed no significant changes in the weathered plastic pellets, but there were different intensities of characteristic peaks after exposure to UV irradiation. In addition, SEM images illustrated that granular oxidation, cracks and flakes were common patterns during degradation, and the plastic pellets in the three different environments experienced different levels of chemical weathering. We suggest that further studies on the degradation processes of plastic debris are needed to predict the fate of plastic debris in the environment.

5.
Environ Sci Pollut Res Int ; 24(32): 24928-24935, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28918553

RESUMEN

Microplastic pollution has exhibited a global distribution, including seas, lakes, rivers, and terrestrial environment in recent years. However, little attention was paid on the atmospheric environment, though the fact that plastic debris can escape as wind-blown debris was previously reported. Thus, characteristics of microplastics in the atmospheric fallout from Dongguan city were preliminarily studied. Microplastics of three different polymers, i.e., PE, PP, and PS, were identified. Diverse shapes of microplastics including fiber, foam, fragment, and film were found, and fiber was the dominant shape of the microplastics. SEM images illustrated that adhering particles, grooves, pits, fractures, and flakes were the common patterns of degradation. The concentrations of non-fibrous microplastics and fibers ranged from 175 to 313 particles/m2/day in the atmospheric fallout. Thus, dust emission and deposition between atmosphere, land surface, and aquatic environment were associated with the transportation of microplastics.


Asunto(s)
Contaminación Ambiental/análisis , Plásticos/análisis , Residuos/análisis , Atmósfera , China , Lagos , Océanos y Mares , Ríos , Viento
6.
Integr Environ Assess Manag ; 13(3): 476-482, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28440924

RESUMEN

Microplastics pollution has been documented in the global environment, including at sea, in freshwater and in atmospheric fallout. Ingestion of microplastics by multiple kinds of organisms has been reported and has received increasing attention, because microplastics not only act as a source of toxic chemicals but also a sink for toxic chemicals. To better understand the great concerns about microplastics and associated toxic chemicals potential exposed to the organisms ingesting the debris, we should know more about the occurrence, fate, and risks of microplastics in the environment. What we should do depends on this better understanding. Integr Environ Assess Manag 2017;13:476-482. © 2017 SETAC.


Asunto(s)
Monitoreo del Ambiente , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Ecosistema , Medición de Riesgo
7.
Chemosphere ; 171: 248-258, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28024210

RESUMEN

While large quantities of studies on microplastics in the marine environment have been widely carried out, few were available in the freshwater environment. The occurrence and characteristics, including composition, abundance, surface texture and interaction with heavy metals, of microplastics in the surface sediments from Beijiang River littoral zone were investigated. The concentrations of microplastics ranged from 178 ± 69 to 544 ± 107 items/kg sediment. SEM images illustrated that pits, fractures, flakes and adhering particles were the common patterns of degradation. Chemical weathering of microplastics was also observed and confirmed by µ-FTIR. EDS spectra displayed difference in the elemental types of metals on the different surface sites of individual microplastic, indicating that some metals carried by microplastics were not inherent but were derived from the environment. The content of metals (Ni, Cd, Pb, Cu, Zn and Ti) in microplastics after ultrasonic cleaning has been analyzed by ICP-MS. Based on data from the long-term sorption of metals by microplastics and a comparison of metal burden between microplastics, macroplastics and fresh plastic products, we suggested that the majority of heavy metals carried by microplastics were derived from inherent load.


Asunto(s)
Sedimentos Geológicos/química , Metales Pesados/metabolismo , Plásticos/química , Ríos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , China , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...