Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(30): eabq4240, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905188

RESUMEN

Metasurfaces consisting of nanoscale structures are underpinning new physical principles for the creation and shaping of quantum states of light. Multiphoton states that are entangled in spatial or angular domains are an essential resource for many quantum applications; however, their production traditionally relies on bulky nonlinear crystals. We predict and demonstrate experimentally the generation of spatially entangled photon pairs through spontaneous parametric down-conversion from a metasurface incorporating a nonlinear thin film of lithium niobate covered by a silica meta-grating. We measure the correlations of photon pairs and identify their spatial antibunching through violation of the classical Cauchy-Schwarz inequality, witnessing the presence of multimode entanglement. Simultaneously, the photon-pair rate is strongly enhanced by 450 times as compared to unpatterned films because of high-quality-factor resonances. These results pave the way to miniaturization of various quantum devices by incorporating ultrathin metasurfaces functioning as room temperature sources of quantum-entangled photons.

2.
ACS Nano ; 14(2): 1379-1389, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31877017

RESUMEN

High-index III-V semiconductor nanoantennas have gained great attention for enhanced nonlinear light-matter interactions, in the past few years. However, the complexity of nonlinear emission profiles imposes severe constraints on practical applications, such as in optical communications and integrated optoelectronic devices. These complexities include the lack of unidirectional nonlinear emission and the severe challenges in switching between forward and backward emissions, due to the structure of the susceptibility tensor of the III-V nanoantennas. Here, we propose a solution to both issues via engineering the nonlinear tensor of the nanoantennas. The special nonlinear tensorial properties of zinc-blende material can be used to engineer the nonlinear characteristics via growing the nanoantennas along different crystalline orientations. Based on the nonlinear multipolar effect, we have designed and fabricated (110)-grown GaAs nanoantennas, with engineered tensorial properties, embedded in a transparent low-index material. Our technique provides an approach not only for unidirectional second-harmonic generation (SHG) forward or backward emission but also for switching from one to another. Importantly, switching the SHG emission directionality is obtained only by rotating the polarization of the incident light, without the need for physical variation of the antennas or the environment. This characteristic is an advantage, as compared to other nonlinear nanoantennas, including (100)- and (111)-grown III-V counterparts or silicon and germanium nanoantennas. Indeed, (110)-GaAs nanoantennas allow for engineering the nonlinear nanophotonic systems including nonlinear "Huygens metasurfaces" and offer exciting opportunities for various nonlinear nanophotonics technologies, such as nanoscale light routing and light sources, as well as multifunctional flat optical elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA