Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 274: 125977, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560963

RESUMEN

Pressure-sensitive paints (PSP) enable non-intrusive visualization of surface pressure distribution on model surface which is important for aerodynamic studies. However, conventional PSP materials suffer from photobleaching and inadequate sensitivity. In this work, we rationally designed and synthesized novel dendritic oxygen probes (PT1 and PT2) by covalently grafting fluorinated dendrons onto platinum tetrakis(pentafluorophenyl)porphyrin (PT0) (a common oxygen probe). Subsequently, PT2 loaded nanofibers membranes from polycaprolactone (PCL) were fabricated by electrospinning. Fabricated membranes showed high oxygen sensitivity (I0/I100 = 35.3) with excellent flexibility, good reversibility, and outstanding photostability (merely 2.0% intensity loss after prolonged irradiation). The pressure sensitivity was found around 0.73 % per kilopascal. Furthermore, significant variation in emission intensity with respect to the variation in air pressure (1.3-101.32 kPa), facilitates the naked eye visualization of the pressure distribution on the membrane surface. Such excellent oxygen and pressure sensitivity and photostability might be due to high fluorine contents of complex dendritic structure of PT2. This flexible fluorine-functionalized dendritic oxygen probe puts forward a facile and effective strategy to develop advanced PSP materials enabling accurate pressure mapping for aerodynamic studies.

2.
Carbohydr Polym ; 251: 117084, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142625

RESUMEN

Many anti-counterfeiting inks have been explored recently, most of them are commonly involved in weak fastness, high cost and long-term toxicity, impeding their real-life applications. Herein, an environment-friendly and inexpensive anti-counterfeiting ink with excellent fastness is reported. The untifake ink is developed by combining hybrid dots (silicon/carbon) with hydroxyethyl cellulose (HEC) binder. Interestingly, the HEC binder can effectively prevent from aggregation-induced quenching of hybrid dots. Subsequently, the customized patterns are successfully transferred onto different surfaces of various substrates including cotton fabric, cellulosic paper, glass, metal, silicon wafer and PET film, using the as-prepared ink by screen-printing technique, exhibiting that the hybrid dots/HEC ink possesses widespread practicability. Notably, fluorescent color of these patterns can be switchable by adjusting environmental pH-value, further imparting the as-prepared ink with excellent covert performance. This new fluorescent hybrid dots/HEC ink will be promising candidates for high-level anti-counterfeiting applications including food packaging, apparel and documents.

3.
Polymers (Basel) ; 11(9)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487914

RESUMEN

Polymer-based far-infrared radiation (FIR) composite materials are receiving increasing attention due to their significant influence on bioactivity. This study reports the processing of FIR composite films based on a polymer matrix and FIR radiation ceramic powders, as well as the characterization of the FIR composites. Field-emission scanning electron microscopy (SEM) and laser particle size analysis were employed to analyze the characteristic of the ceramic powders. The average size, dispersity, and specific surface area of the ceramic powders were 2602 nm, 0.97961, and 0.76 m2/g, respectively. The results show that the FIR ceramic powders used in the composite films had excellent far-infrared emissive performance. Moreover, by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), it was indicated that the thermal performance and mechanical properties of the composite films were significantly influenced (p < 0.05) by the addition of the FIR ceramic powders. Specifically, the elongation at break decreased from 333 mm to 201 mm with the increase in FIR ceramic powders. Meanwhile, the contact angle and light transmittance were also changed by the addition of the FIR ceramic powders. Furthermore, the two different processing methods had great influence on the properties of the composite films. Moreover, the composite blown films with 1.5% FIR ceramic powders showed the highest far-infrared emissivity, which was 0.924.

4.
Nanomaterials (Basel) ; 8(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544509

RESUMEN

More multipurpose and convenient demand driven by Radio Frequency Identification (RFID) and intelligent packaging require flexible power sources. A VO2(B)/graphene (VO2(B)/GN) core-shell composite was successfully synthesized by the hydrothermal treatment with V2O5 and graphite. The as-obtained sample was characterized by XRD, FT-IR, SEM, TEM, and XPS measurements. In addition, the electrochemical properties of VO2(B)/GN were tested. Due to its great electrochemical performance and mechanical properties, graphene could increase the electrochemical performance and strengthen the structural stability of the material at the same time. With increasing loading amount of GN, the specific capacitance of VO2(B)/GN increased correspondingly. With 20% GN loading, the initial discharge specific capacity could reach 197 F g-1 at 0.5 A g-1, and 160 F g-1 at 1 A g-1 in 0.5 M Na2SO4 electrolyte, which is better than that of pure rod-like VO2(B). The capacitance of the VO2(B)/GN (20%) composite electrode retains 95.49% after 1000 cycles, which is higher than that of a pure VO2(B) electrode (85.43%), indicating that the VO2(B)/GN composite possesses better cycling stability. Moreover, a symmetrical solid-state supercapacitor (SCs) using VO2(B)/GN(20%) as the anode was assembled. Four printed SCs were connected in series to light up a 1.5 V red LED. This demonstrates its potential application in intelligent packaging to trace food safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA