Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein J ; 36(6): 489-501, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29030733

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic proteins known to cause flaccid muscle paralysis as a result of inhibition of neurotransmitter release from peripheral cholinergic synapses. BoNT type A (BoNT/A) is a 150 kDa protein consisting of two major subunits: light chain (LC) and heavy chain (HC). The LC is required for the catalytic activity of neurotoxin, whereas the C and N terminal domains of the HC are required for cell binding, and translocation of LC across the endosome membranes, respectively. To better understand the structural and functional aspects of BoNT/A intoxication we report here the development of high yield Escherichia coli expression system (2-20-fold higher yield than the value reported in the literature) for the production of recombinant light chain-translocation domain (rLC-TD/A) module of BoNT/A which is catalytically active and translocation competent. The open reading frame of rLC-TD/A was PCR amplified from deactivated recombinant BoNT/A gene (a non-select agent reagent), and was cloned using pET45b (+) vector to express in E. coli cells. The purification procedure included a sequential order of affinity chromatography, trypsinization, and anion exchange column chromatography. We were able to purify > 95% pure, catalytically active and structurally well-folded protein. Comparison of enzyme kinetics of purified LC-TD/A to full-length toxin and recombinant light chain A suggest that the affinity for the substrate is in between endopeptidase domain and botulinum toxin. The potential application of the purified protein has been discussed in toxicity and translocation assays.


Asunto(s)
Toxinas Botulínicas Tipo A/aislamiento & purificación , Toxinas Botulínicas Tipo A/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Escherichia coli/genética , Cinética , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA