Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 861151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387128

RESUMEN

Background: To determine whether vascular index (VI; defined as the ratio of Doppler signal pixels to pixels in the total lesion) measured via superb microvascular imaging in breast cancer correlates with immunohistochemically defined subtype and is able to predict molecular subtypes. Methods: This prospective study involved 225 patients with 225 mass-type invasive breast cancers (mean size 2.6 ± 1.4 cm, range 0.4~5.9 cm) who underwent ultrasound and superb microvascular imaging (SMI) at Peking Union Medical College Hospital before breast surgery from December 2016 to June 2018. The correlations between primary tumor VI measured via SMI, clinicopathological findings, and molecular subtype were analyzed. The performance of VI for prediction of molecular subtypes in invasive breast cancer was investigated. Results: The median VI of the 225 tumors was 7.3% (4.2%~11.8%) (range 0%~54.4%). Among the subtypes of the 225 tumors, 41 (18.2%) were luminal A, 91 (40.4%) were luminal B human epidermal growth factor receptor-2 (HER-2)-negative, 26 (11.6%) were luminal B HER-2-positive, 17 (7.6%) were HER-2-positive, and 50 (22.2%) were triple-negative, and the corresponding median VI values were 5.9% (2.6%~11.6%) (range 0%~47.1%), 7.3 (4.4%~10.5%) (range 0%~29.5%), 6.3% (3.9%~11.3%) (range 0.6%~22.2%), 8.2% (4.9%~15.6%) (range 0.9%~54.4%), and 9.2% (5.1%~15.3%) (range 0.7%~32.9%), respectively. Estrogen receptor (ER) negativity, higher tumor grade, and higher Ki-67 index (≥20%) were significantly associated with a higher VI value. Tumor size, ER status, and Ki-67 index were shown to independently influence VI. A cutoff value of 4.1% yielded 79.9% sensitivity and 41.5% specificity with an area under the receiver operating characteristic curve (AUC) of 0.58 for predicting that a tumor was of the luminal A subtype. A cutoff value of 16.4% yielded 30.0% sensitivity and 90.3% specificity with an AUC of 0.60 for predicting a triple-negative subtype. Conclusions: VI, as a quantitative index obtained by SMI examination, could reflect histologic vascular changes in invasive breast cancer and was found to be higher in more biologically aggressive breast tumors. VI shows a certain degree of correlation with the molecular subtype of invasive breast cancer and plays a limited role in predicting the luminal A with high sensitivity and triple-negative subtype with high specificity.

2.
Cancer Manag Res ; 12: 1819-1826, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210624

RESUMEN

PURPOSE: To investigate whether the vascular index (VI) of superb microvascular imaging (SMI) could improve the diagnostic efficiency for BI-RADS 4 breast lesions and reduce the number of unnecessary biopsies. PATIENTS AND METHODS: For this study, we selected 222 consecutive BI-RADS 4 breast lesions detected by ultrasound and confirmed by pathology from January 2016 to October 2018. A VI of 4.0 was set as the cutoff value to degrade BI-RADS classification. We calculated the accuracy, sensitivity and PPV of a BI-RADS diagnosis alone and the combination of BI-RADS and the VI. RESULTS: Pathologically, of the 222 lesions, 129 were confirmed to be benign, and 93 were found to be malignant. A VI of 4.0 was set as the cutoff value; when the VI≤4.0, those BI-RADS 4 masses were downgraded one level (4C-4B, 4B-4A, 4A-3) to an integral BI-RADS grade, while the others maintained the conventional grade. A total of 54 BI-RADS 4 lesions were degraded to BI-RADS 3, including 53 benign lesions and 1 malignant lesion. The diagnostic accuracy (65.3% vs 41.9%) and PPV (54.8% vs 41.9%) were significantly improved. The sensitivity decreased slightly (98.9% vs 100%) because 1 of the 54 downgraded BI-RADS 4 lesions, which had a pathological type of invasive ductal carcinoma, was incorrectly downgraded. CONCLUSION: SMI is a noninvasive tool for visualizing the vascular structure with high-resolution microvascular images. As a quantitative index, the VI can be used to appropriately downgrade benign lesions classified as BI-RADS 4, which can improve the diagnostic accuracy and PPV and reduce unnecessary biopsies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA