Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38052724

RESUMEN

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

2.
Small ; 19(31): e2206222, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36907994

RESUMEN

Optimizing photosynthesis is imperative for providing energy and organics for all life on the earth. Here, carbon dots doped with pyridinic nitrogen (named lev-CDs) are synthesized by the one-pot hydrothermal method, and the structure-function relationship between functional groups on lev-CDs and photosynthesis of Chlorella pyrenoidosa (C. pyrenoidosa) is proposed. Pyridinic nitrogen plays a key role in the positive effect on photosynthesis caused by lev-CDs. In detail, lev-CDs act as electron donors to supply photo-induced electrons to P680+ and QA+ , causing electron transfer from lev-CDs to the photosynthetic electron transport chain in the photosystems. In return, the recombination efficiency of electron-hole pairs on lev-CDs decreases. As a result, the electron transfer rate in the electron transport chain, the activity of photosystem II, and the Calvin cycle are enhanced. Moreover, the electron transfer rate between C. pyrenoidosa and external circumstances enhanced by lev-CDs is about 50%, and electrons exported from C. pyrenoidosa can be used to reduce iron(III). This study is of great significance for engineering nanomaterials to improve photosynthesis.


Asunto(s)
Chlorella , Puntos Cuánticos , Transporte de Electrón , Electrones , Carbono/farmacología , Nitrógeno , Compuestos Férricos/farmacología , Fotosíntesis
3.
Biosens Bioelectron ; 219: 114848, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327556

RESUMEN

Divalent copper is a double-edged sword for plants, excess or shortage of copper ions will cause adverse reactions in plants. Currently, Cu2+ sensor for plants is still underdeveloped and new technology is urgently required for realizing one-step and real-time detection of Cu2+ in plants. Herein, a home-made and low-cost sensing platform is constructed by using carbon dots (CDs) as the optical probe, electronic devices for image acquisition, and a built-in algorithm program for image processing, which allows the dynamic monitoring of Cu2+ distribution in different plant species with high spatial and temporal resolution. We found that the detection limit of R-CDs for Cu2+ in water sample was 0.375 nM, and 11.7 mg/kg or even less Cu2+ in plants can be visually observed and accurately detected by the sensing platform. Moreover, this sensing platform has also been employed for reporting the spatial distribution of Cu2+ in the external environment of plants, demonstrating its applicability for monitoring Cu2+ both in living plants and the surrounding environment. This study provides a smart sensing platform for precise detection in plant internal and external environments, offering a promising strategy for precision agriculture in real-time and remote-control manners.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...