Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 4(1): 58, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532017

RESUMEN

BACKGROUND: Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS: A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor ßγ (IL-2Rßγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rßγ complex. RESULTS: Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION: SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.


Interleukin-2 (IL-2) is a protein that functions as a master regulator of immune responses. A key function of IL-2 is the stimulation of immune-regulatory cells that suppress autoimmune disease, which occurs when the body's immune system mistakenly attacks healthy tissues. However, therapeutic use of IL-2 is limited by its short duration of action and incomplete selectivity for immune-suppressive cells over off-target immune-stimulatory cells. We employ a platform that we have previously developed, which is a bacterial organism with an expanded DNA code, to identify a new version of IL-2, SAR444336 (SAR'336), with an extended duration of activity and increased selectivity for immune-suppressive cells. In mice and monkeys, SAR'336 was a specific activator of immune suppression, with minimal effect on immune cells that stimulate autoimmunity. Our results support further development of SAR'336 for treatment of autoimmune disorders.

2.
Diabetes ; 69(5): 1032-1041, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32079579

RESUMEN

Type 2 diabetes (T2D) is caused by loss of pancreatic ß-cell mass and failure of the remaining ß-cells to deliver sufficient insulin to meet demand. ß-Cell glucolipotoxicity (GLT), which refers to combined, deleterious effects of elevated glucose and fatty acid levels on ß-cell function and survival, contributes to T2D-associated ß-cell failure. Drugs and mechanisms that protect ß-cells from GLT stress could potentially improve metabolic control in patients with T2D. In a phenotypic screen seeking low-molecular-weight compounds that protected ß-cells from GLT, we identified compound A that selectively blocked GLT-induced apoptosis in rat insulinoma cells. Compound A and its optimized analogs also improved viability and function in primary rat and human islets under GLT. We discovered that compound A analogs decreased GLT-induced cytosolic calcium influx in islet cells, and all measured ß-cell-protective effects correlated with this activity. Further studies revealed that the active compound from this series largely reversed GLT-induced global transcriptional changes. Our results suggest that taming cytosolic calcium overload in pancreatic islets can improve ß-cell survival and function under GLT stress and thus could be an effective strategy for T2D treatment.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/toxicidad , Glucolípidos/antagonistas & inhibidores , Glucolípidos/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Animales , Apoptosis , Línea Celular , Supervivencia Celular , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Humanos , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Transcriptoma
3.
J Biol Chem ; 294(10): 3359-3366, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30647128

RESUMEN

Bile acids are critical metabolites in the gastrointestinal tract and contribute to maintaining intestinal immune homeostasis through cross-talk with the gut microbiota. The conversion of bile acids by the gut microbiome is now recognized as a factor affecting both host metabolism and immune responses, but its physiological roles remain unclear. We conducted a screen for microbiome metabolites that would function as inflammasome activators and herein report the identification of 12-oxo-lithocholic acid (BAA485), a potential microbiome-derived bile acid metabolite. We demonstrate that the more potent analogue 11-oxo-12S-hydroxylithocholic acid methyl ester (BAA473) can induce secretion of interleukin-18 (IL-18) through activation of the inflammasome in both myeloid and intestinal epithelial cells. Using a genome-wide CRISPR screen with compound induced pyroptosis in THP-1 cells, we identified that inflammasome activation by BAA473 is pyrin-dependent (MEFV). To our knowledge, the bile acid analogues BAA485 and BAA473 are the first small molecule activators of the pyrin inflammasome. We surmise that pyrin inflammasome activation through microbiota-modified bile acid metabolites such as BAA473 and BAA485 plays a role in gut microbiota regulated intestinal immune response. The discovery of these two bioactive compounds may help to further unveil the importance of pyrin in gut homeostasis and autoimmune diseases.


Asunto(s)
Ácidos y Sales Biliares/inmunología , Células Epiteliales/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa , Inflamasomas/inmunología , Mucosa Intestinal/inmunología , Pirina/inmunología , Ácidos y Sales Biliares/química , Humanos , Células Mieloides/inmunología , Células THP-1
4.
J Immunol ; 192(7): 3383-9, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24600036

RESUMEN

Type I IFN plays a key role in antiviral responses. It also has been shown that deregulation of type I IFN expression following abnormal activation of TLRs contributes to the pathogenesis of systemic lupus erythematosus. In this study, we find that PIKfyve, a class III lipid kinase, is required for endolysosomal TLR-induced expression of type I IFN in mouse and human cells. PIKfyve binds to phosphatidylinositol 3-phosphate and synthesizes phosphatidylinositol 3,5-bisphosphate, and plays a critical role in endolysosomal trafficking. However, PIKfyve modulates type I IFN production via mechanisms independent of receptor and ligand trafficking in endolysosomes. Instead, pharmacological or genetic inactivation of PIKfyve rapidly induces expression of the transcription repressor ATF3, which is necessary and sufficient for suppression of type I IFN expression by binding to its promoter and blocking its transcription. Thus, we have uncovered a novel phosphoinositide-mediated regulatory mechanism that controls TLR-mediated induction of type I IFN, which may provide a new therapeutic indication for the PIKfyve inhibitor.


Asunto(s)
Factor de Transcripción Activador 3/inmunología , Interferón Tipo I/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Receptores Toll-Like/inmunología , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Hidrazonas , Imidazoles/farmacología , Immunoblotting , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Morfolinas/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunología , Unión Proteica/inmunología , Pirimidinas , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/inmunología , Triazinas/farmacología
5.
Chem Biol ; 20(7): 912-21, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23890009

RESUMEN

Toll-like receptor (TLR) signaling is a key component of innate immunity. Aberrant TLR activation leads to immune disorders via dysregulation of cytokine production, such as IL-12/IL-23. Herein, we identify and characterize PIKfyve, a lipid kinase, as a critical player in TLR signaling using apilimod as an affinity tool. Apilimod is a potent small molecular inhibitor of IL-12/IL-23 with an unknown target and has been evaluated in clinical trials for patients with Crohn's disease or rheumatoid arthritis. Using a chemical genetic approach, we show that it binds to PIKfyve and blocks its phosphotransferase activity, leading to selective inhibition of IL-12/IL-23p40. Pharmacological or genetic inactivation of PIKfyve is necessary and sufficient for suppression of IL-12/IL-23p40 expression. Thus, we have uncovered a phosphoinositide-mediated regulatory mechanism that controls TLR signaling.


Asunto(s)
Interleucina-12/antagonistas & inhibidores , Interleucina-23/antagonistas & inhibidores , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo , Triazinas/farmacología , Animales , Línea Celular , Citocinas/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazonas , Ratones , Morfolinas/metabolismo , Unión Proteica , Pirimidinas , Especificidad por Sustrato , Triazinas/metabolismo
6.
Exp Cell Res ; 314(17): 3187-97, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18773890

RESUMEN

Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.


Asunto(s)
Adhesión Celular/fisiología , Comunicación Celular/fisiología , Células Epiteliales , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Forma de la Célula , Células Epiteliales/citología , Células Epiteliales/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/genética
7.
Mol Cell Biol ; 28(1): 201-14, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17967873

RESUMEN

Focal adhesion kinase (FAK) is an essential kinase that regulates developmental processes and functions in the pathology of human disease. An intramolecular autoinhibitory interaction between the FERM and catalytic domains is a major mechanism of regulation. Based upon structural studies, a fluorescence resonance energy transfer (FRET)-based FAK biosensor that discriminates between autoinhibited and active conformations of the kinase was developed. This biosensor was used to probe FAK conformational change in live cells and the mechanism of regulation. The biosensor demonstrates directly that FAK undergoes conformational change in vivo in response to activating stimuli. A conserved FERM domain basic patch is required for this conformational change and for interaction with a novel ligand for FAK, acidic phospholipids. Binding to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing phospholipid vesicles activated and induced conformational change in FAK in vitro, and alteration of PIP2 levels in vivo changed the level of activation of the conformational biosensor. These findings provide direct evidence of conformational regulation of FAK in living cells and novel insight into the mechanism regulating FAK conformation.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Ácidos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Técnicas Biosensibles , Línea Celular , Supervivencia Celular , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolípidos/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína
8.
IUBMB Life ; 59(11): 709-16, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17968709

RESUMEN

Recent studies using animal models have demonstrated an important role for FAK in the cardiovascular system. In particular, FAK is essential for angiogenesis in the embryo, functions in heart development and modulates the response of cardiomyocytes to pressure overload in adult mice. FAK function at the cellular level is discussed to provide insight into the mechanisms regulating these biological events and the role of FAK in controlling endothelial junctions and responses to mechanical stimulation are discussed.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Sistema Cardiovascular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Movimiento Celular , Proliferación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Neovascularización Fisiológica , Transducción de Señal/fisiología , Estrés Mecánico
9.
Cell ; 129(6): 1177-87, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17574028

RESUMEN

Appropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/química , Secuencia de Aminoácidos , Animales , Aves , Adhesión Celular , Movimiento Celular , Supervivencia Celular , Inhibidores Enzimáticos/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
10.
Mol Cell Biol ; 26(7): 2857-68, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537926

RESUMEN

Paxillin is a 68-kDa focal adhesion-associated protein that plays an important role in controlling cell spreading and migration. Phosphorylation of paxillin regulates its biological activity and thus has warranted investigation. Serine 126 and serine 130 were previously identified as two major extracellular signal-regulated kinase (ERK)-dependent phosphorylation sites in Raf-transformed fibroblasts. Here serine 126 is identified as a phosphorylation site induced by lipopolysaccharide (LPS) stimulation of RAW264.7 cells. A number of other stimuli, including adhesion and colony-stimulating factor, induce serine 126 phosphorylation in RAW264.7 cells, and nerve growth factor (NGF) treatment induces serine 126 phosphorylation in PC12 cells. The kinase responsible for phosphorylation of this site is identified as glycogen synthase kinase 3 (GSK-3). Interestingly, this GSK-3-dependent phosphorylation is regulated via an ERK-dependent priming mechanism, i.e., phosphorylation of serine 130. Phosphorylation of S126/S130 was required to promote spreading in paxillin null cells, and LPS-induced spreading of RAW264.7 cells was inhibited by expression of the paxillin S126A/S130A mutant. Furthermore, this mutant also retarded NGF-induced PC12 cell neurite outgrowth. Hence, phosphorylation of paxillin on serines 126 and 130, which is mediated by an ERK/GSK-3 dual-kinase mechanism, plays an important role in cytoskeletal rearrangement.


Asunto(s)
Citoesqueleto/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Paxillin/metabolismo , Animales , Movimiento Celular , Fibroblastos/citología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Factores de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Células PC12 , Fosforilación/efectos de los fármacos , Transporte de Proteínas , Ratas , Serina/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...