Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cyborg Bionic Syst ; 5: 0125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841725

RESUMEN

Depression is a common and severely debilitating neuropsychiatric disorder. Multiple studies indicate a strong correlation between the occurrence of immunological inflammation and the presence of depression. The basolateral amygdala (BLA) is crucial in the cognitive and physiological processing and control of emotion. However, due to the lack of detection tools, the neural activity of the BLA during depression is not well understood. In this study, a microelectrode array (MEA) based on the shape and anatomical location of the BLA in the brain was designed and manufactured. Rats were injected with lipopolysaccharide (LPS) for 7 consecutive days to induce depressive behavior. We used the MEA to detect neural activity in the BLA before modeling, during modeling, and after LPS administration on 7 consecutive days. The results showed that after LPS treatment, the spike firing of neurons in the BLA region of rats gradually became more intense, and the local field potential power also increased progressively. Further analysis revealed that after LPS administration, the spike firing of BLA neurons was predominantly in the theta rhythm, with obvious periodic firing characteristics appearing after the 7 d of LPS administration, and the relative power of the local field potential in the theta band also significantly increased. In summary, our results suggest that the enhanced activity of BLA neurons in the theta band is related to the depressive state of rats, providing valuable guidance for research into the neural mechanisms of depression.

2.
ACS Sens ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843307

RESUMEN

The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.

3.
Adv Sci (Weinh) ; : e2401670, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828784

RESUMEN

Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38833518

RESUMEN

Due to their compact size and exceptional sensitivity at room temperature, magnetoresistance (MR) sensors have garnered considerable interest in numerous fields, particularly in the detection of weak magnetic signals in biological systems. The "magnetrodes", integrating MR sensors with needle-shaped Si-based substrates, are designed to be inserted into the brain for local magnetic field detection. Although recent research has predominantly focused on giant magnetoresistance (GMR) sensors, tunnel magnetoresistance (TMR) sensors exhibit a significantly higher sensitivity. In this study, we introduce TMR-based magnetrodes featuring TMR sensors at both the tip and midsection of the probe, enabling detection of local magnetic fields at varied spatial positions. To enhance detectivity, we designed and fabricated magnetrodes with varied aspect ratios of the free layer, incorporating diverse junction shapes, quantities, and serial arrangements. Utilizing a custom-built magnetotransport and noise measurement system for characterization, our TMR-based magnetrode demonstrates a limit of detection (LOD) of 300pT/Hz at 1 kHz. This implies that neuronal spikes can be distinguished with minimal averaging, thereby facilitating the elucidation of their magnetic properties.

5.
ACS Sens ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779969

RESUMEN

Precise assessment of wakefulness states during sevoflurane anesthesia and timely arousal are of paramount importance to refine the control of anesthesia. To tackle this issue, a bidirectional implantable microelectrode array (MEA) is designed with the capability to detect electrophysiological signal and perform in situ deep brain stimulation (DBS) within the dorsomedial hypothalamus (DMH) of mice. The MEA, modified with platinum nanoparticles/IrOx nanocomposites, exhibits exceptional characteristics, featuring low impedance, minimal phase delay, substantial charge storage capacity, high double-layer capacitance, and longer in vivo lifetime, thereby enhancing the sensitivity of spike firing detection and electrical stimulation (ES) effectiveness. Using this MEA, sevoflurane-inhibited neurons and sevoflurane-excited neurons, together with changes in the oscillation characteristics of the local field potential within the DMH, are revealed as indicative markers of arousal states. During the arousal period, varying-frequency ESs are applied to the DMH, eliciting distinct arousal effects. Through in situ detection and stimulation, the disparity between these outcomes can be attributed to the influence of DBS on different neurons. These advancements may further our understanding of neural circuits and their potential applications in clinical contexts.

6.
Cyborg Bionic Syst ; 5: 0123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784125

RESUMEN

The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 µm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the ß-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38656860

RESUMEN

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Asunto(s)
Estimulación Encefálica Profunda , Microelectrodos , Ratas Sprague-Dawley , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Animales , Ratas , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/rehabilitación , Potenciales de Acción/fisiología , Algoritmos , Sistemas de Computación , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/rehabilitación , Aprendizaje Automático
8.
Adv Mater ; : e2314310, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655719

RESUMEN

The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.

9.
Front Bioeng Biotechnol ; 12: 1376151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633666

RESUMEN

The striatum plays a crucial role in studying epilepsy, as it is involved in seizure generation and modulation of brain activity. To explore the complex interplay between the striatum and epilepsy, we engineered advanced microelectrode arrays (MEAs) specifically designed for precise monitoring of striatal electrophysiological activities in rats. These observations were made during and following seizure induction, particularly three and 7 days post-initial modeling. The modification of graphene oxide (GO)/poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/platinu-m nanoparticles (PtNPs) demonstrated a marked reduction in impedance (10.5 ± 1.1 kΩ), and maintained exceptional stability, with impedance levels remaining consistently low (23 kΩ) even 14 days post-implantation. As seizure intensity escalated, we observed a corresponding increase in neuronal firing rates and local field potential power, with a notable shift towards higher frequency peaks and augmented inter-channel correlation. Significantly, during the grand mal seizures, theta and alpha bands became the dominant frequencies in the local field potential. Compared to the normal group, the spike firing rates on day 3 and 7 post-modeling were significantly higher, accompanied by a decreased firing interval. Power in both delta and theta bands exhibited an increasing trend, correlating with the duration of epilepsy. These findings offer valuable insights into the dynamic processes of striatal neural activity during the initial and latent phases of temporal lobe epilepsy and contribute to our understanding of the neural mechanisms underpinning epilepsy.

10.
Biosens Bioelectron ; 253: 116168, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452571

RESUMEN

Burst and local field potential (LFP) are fundamental components of brain activity, representing fast and slow rhythms, respectively. Understanding the intricate relationship between burst and LFP is crucial for deciphering the underlying mechanisms of brain dynamics. In this study, we fabricated high-performance microelectrode arrays (MEAs) using the SWCNTs/PEDOT:PSS nanocomposites, which exhibited favorable electrical properties (low impedance: 12.8 ± 2.44 kΩ) and minimal phase delay (-11.96 ± 1.64°). These MEAs enabled precise exploration of the burst-LFP interaction in cultured cortical networks. After a 14-day period of culture, we used the MEAs to monitor electrophysiological activities and revealed a time-locking relationship between burst and LFP, indicating the maturation of the neural network. To further investigate this relationship, we modulated burst firing patterns by treating the neural culture with increasing concentrations of glycine. The results indicated that glycine effectively altered burst firing patterns, with both duration and spike count increasing as the concentration rose. This was accompanied by an enhanced level of time-locking between burst and LFP but a decrease in synchrony among neurons. This study not only highlighted the pivotal role of SWCNTs/PEDOT:PSS-modified MEAs in elucidating the interaction between burst and LFP, bridging the gap between slow and fast brain rhythms in vitro but also provides valuable insights into the potential therapeutic strategies targeting neurological disorders associated with abnormal rhythm generation.


Asunto(s)
Técnicas Biosensibles , Nanocompuestos , Microelectrodos , Neuronas/fisiología , Glicina
11.
Front Bioeng Biotechnol ; 12: 1347625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357703

RESUMEN

17ß-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.

12.
J Zhejiang Univ Sci B ; : 1-21, 2024 Feb 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38423536

RESUMEN

Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.

13.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276613

RESUMEN

The specific and sensitive detection of 17ß-estradiol (E2) is critical for diagnosing and treating numerous diseases, and aptamers have emerged as promising recognition probes for developing detection platforms. However, traditional long-sequence E2 aptamers have demonstrated limited clinical performance due to redundant structures that can affect their stability and recognition ability. There is thus an urgent need to further optimize the structure of the aptamer to build an effective detection platform for E2. In this work, we have designed a novel short aptamer that retains the key binding structure of traditional aptamers to E2 while eliminating the redundant structures. The proposed aptamer was evaluated for its binding properties using microscale thermophoresis, a gold nanoparticle-based colorimetric method, and electrochemical assays. Our results demonstrate that the proposed aptamer has excellent specific recognition ability for E2 and a high affinity with a dissociation constant of 92 nM. Moreover, the aptamer shows great potential as a recognition probe for constructing a highly specific and sensitive clinical estradiol detection platform. The aptamer-based electrochemical sensor enabled the detection of E2 with a linear range between 5 pg mL-1 and 10 ng mL-1 (R2 = 0.973), and the detection capability of a definite low concentration level was 5 pg mL-1 (S/N = 3). Overall, this novel aptamer holds great promise as a valuable tool for future studies on the role of E2 in various physiological and pathological processes and for developing sensitive and specific diagnostic assays for E2 detection in clinical applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Estradiol/metabolismo , Oro/química , Colorimetría , Técnicas Biosensibles/métodos , Límite de Detección
14.
ACS Sens ; 8(12): 4765-4773, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38015643

RESUMEN

The functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation. The working electrode, reference electrode, and counter electrode are all integrated within the ITDDC in electrochemical detection, enabling the real-time in situ monitoring of dopamine concentrations in animals in motion. The reference, working, and counter electrodes are surface-modified using PtNPs and polypyrrole, PtNPs and PEDOT:PSS, and PtNPs, respectively. This modification allows for the detection of dopamine concentrations as low as 20 nM. We conducted dual-mode testing on mice in a novel environment and an environment with food rewards. We found distinct dopamine concentration variations along different paths within a novel environment, implying that different dopamine levels may contribute to spatial memory. Moreover, environmental food rewards elevate dopamine significantly, followed by the intense firing of reward place cells, suggesting a crucial role of dopamine in facilitating the encoding of reward-associated locations in animals. The real-time and in situ recording capabilities of ITDDC offer new opportunities to investigate the interplay between electrophysiology and dopamine during animal exploration and reward-based memory and provide a novel glimpse into the correlation between dopamine levels and place cell activity.


Asunto(s)
Dopamina , Células de Lugar , Ratones , Animales , Polímeros , Pirroles , Electrodos , Recompensa
15.
Microsyst Nanoeng ; 9: 143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025884

RESUMEN

Terahertz waves can interact with the nervous system of organisms under certain conditions. Compared to common optical modulation methods, terahertz waves have the advantages of low photon energy and low risk; therefore, the use of terahertz waves to regulate the nervous system is a promising new method of neuromodulation. However, most of the research has focused on the use of terahertz technology for biodetection, while relatively little research has been carried out on the biological effects of terahertz radiation on the nervous system, and there are almost no review papers on this topic. In the present article, we begin by reviewing principles and objects of research regarding the biological effects of terahertz radiation and summarizing the current state of related research from a variety of aspects, including the bioeffects of terahertz radiation on neurons in vivo and in vitro, novel regulation and detection methods with terahertz radiation devices and neural microelectrode arrays, and theoretical simulations of neural information encoding and decoding. In addition, we discuss the main problems and their possible causes and give some recommendations on possible future breakthroughs. This paper will provide insight and assistance to researchers in the fields of neuroscience, terahertz technology and biomedicine.

16.
Front Plant Sci ; 14: 1075013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799558

RESUMEN

High temperatures have a significant impact on plant growth and metabolism. In recent years, the fruit industry has faced a serious threat due to high-temperature stress on fruit plants caused by global warming. In the present study, we explored the molecular regulatory mechanisms that contribute to high-temperature tolerance in kiwifruit. A total of 36 Hsf genes were identified in the A. chinensis (Ac) genome, while 41 Hsf genes were found in the A. eriantha (Ae) genome. Phylogenetic analysis revealed the clustering of kiwifruit Hsfs into three distinct groups (groups A, B, and C). Synteny analysis indicated that the expansion of the Hsf gene family in the Ac and Ae genomes was primarily driven by whole genome duplication (WGD). Analysis of the gene expression profiles revealed a close relationship between the expression levels of Hsf genes and various plant tissues and stress treatments throughout fruit ripening. Subcellular localization analysis demonstrated that GFP-AcHsfA2a/AcHsfA7b and AcHsfA2a/AcHsfA7b -GFP were localized in the nucleus, while GFP-AcHsfA2a was also observed in the cytoplasm of Arabidopsis protoplasts. The results of real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assay revealed that the majority of Hsf genes, especially AcHsfA2a, were expressed under high-temperature conditions. In conclusion, our findings establish a theoretical foundation for analyzing the potential role of Hsfs in high-temperature stress tolerance in kiwifruit. This study also offers valuable information to aid plant breeders in the development of heat-stress-resistant plant materials.

17.
Adv Sci (Weinh) ; 10(33): e2301828, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37863819

RESUMEN

In situ physiological signals of in vitro neural disease models are essential for studying pathogenesis and drug screening. Currently, an increasing number of in vitro neural disease models are established using human-induced pluripotent stem cell (hiPSC) derived neurons (hiPSC-DNs) to overcome interspecific gene expression differences. Microelectrode arrays (MEAs) can be readily interfaced with two-dimensional (2D), and more recently, three-dimensional (3D) neural stem cell-derived in vitro models of the human brain to monitor their physiological activity in real time. Therefore, MEAs are emerging and useful tools to model neurological disorders and disease in vitro using human iPSCs. This is enabling a real-time window into neuronal signaling at the network scale from patient derived. This paper provides a comprehensive review of MEA's role in analyzing neural disease models established by hiPSC-DNs. It covers the significance of MEA fabrication, surface structure and modification schemes for hiPSC-DNs culturing and signal detection. Additionally, this review discusses advances in the development and use of MEA technology to study in vitro neural disease models, including epilepsy, autism spectrum developmental disorder (ASD), and others established using hiPSC-DNs. The paper also highlights the application of MEAs combined with hiPSC-DNs in detecting in vitro neurotoxic substances. Finally, the future development and outlook of multifunctional and integrated devices for in vitro medical diagnostics and treatment are discussed.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades del Sistema Nervioso , Células-Madre Neurales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microelectrodos , Neuronas/metabolismo
18.
Research (Wash D C) ; 6: 0229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719050

RESUMEN

Epilepsy severely impairs the cognitive behavior of patients. It remains unclear whether epilepsy-induced cognitive impairment is associated with neuronal activities in the medial entorhinal cortex (MEC), a region known for its involvement in spatial cognition. To explore this neural mechanism, we recorded the spikes and local field potentials from MEC neurons in lithium-pilocarpine-induced epileptic rats using self-designed microelectrode arrays. Through the open field test, we identified spatial cells exhibiting spatially selective firing properties and assessed their spatial representations in relation to the progression of epilepsy. Meanwhile, we analyzed theta oscillations and theta modulation in both excitatory and inhibitory neurons. Furthermore, we used a novel object recognition test to evaluate changes in spatial cognitive ability of epileptic rats. After the epilepsy modeling, the spatial tuning of various types of spatial cells had suffered a rapid and pronounced damage during the latent period (1 to 5 d). Subsequently, the firing characteristics and theta oscillations were impaired. In the chronic period (>10 d), the performance in the novel object experiment deteriorated. In conclusion, our study demonstrates the detrimental effect on spatial representations and electrophysiological properties of MEC neurons in the epileptic latency, suggesting the potential use of these changes as a "functional biomarker" for predicting cognitive impairment caused by epilepsy.

19.
Front Bioeng Biotechnol ; 11: 1245082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600306

RESUMEN

Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (-15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding.

20.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430543

RESUMEN

Insomnia is a common sleep disorder around the world, which is harmful to people's health, daily life, and work. The paraventricular thalamus (PVT) plays an essential role in the sleep-wake transition. However, high temporal-spatial resolution microdevice technology is lacking for accurate detection and regulation of deep brain nuclei. The means for analyzing sleep-wake mechanisms and treating sleep disorders are limited. To detect the relationship between the PVT and insomnia, we designed and fabricated a special microelectrode array (MEA) to record electrophysiological signals of the PVT for insomnia and control rats. Platinum nanoparticles (PtNPs) were modified onto an MEA, which caused the impedance to decrease and improved the signal-to-noise ratio. We established the model of insomnia in rats and analyzed and compared the neural signals in detail before and after insomnia. In insomnia, the spike firing rate was increased from 5.48 ± 0.28 spike/s to 7.39 ± 0.65 spike/s, and the power of local field potential (LFP) decreased in the delta frequency band and increased in the beta frequency band. Furthermore, the synchronicity between PVT neurons declined, and burst-like firing was observed. Our study found neurons of the PVT were more activated in the insomnia state than in the control state. It also provided an effective MEA to detect the deep brain signals at the cellular level, which conformed with macroscopical LFP and insomnia symptoms. These results laid the foundation for studying PVT and the sleep-wake mechanism and were also helpful for treating sleep disorders.


Asunto(s)
Nanopartículas del Metal , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Animales , Ratas , Microelectrodos , Platino (Metal) , Neuronas , Tálamo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...