Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(29): 38092-38100, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38990674

RESUMEN

The Mn-based polyanion compound Na3MnTi(PO4)3 (NMTP) with a Na superionic conductor (NASICON) structure has attracted incremental attention as a potential cathode material for sodium-ion batteries. However, the occupation of Mn2+ on Na+ vacancies usually leads to severe voltage hysteresis, which in turn results in significant capacity loss, slow Na+ diffusion kinetics, and poor cycling stability. Herein, anion-substituted compounds Na3MnTi(PO4)3-x(SiO4)x (x = 0.1, 0.2, and 0.3) are synthesized. It reveals that the SiO44- substitution could induce partial oxidation of Mn2+ to Mn3+, and the latter has a lower occupancy preference on Na+ vacancies. By the proposed charge compensation strategy, the Mn2+ occupation on Na+ vacancies can be significantly suppressed. As a result, the voltage hysteresis is substantially inhibited, and greatly improved electrochemical performance is achieved. This study offers an alternative strategy to address the voltage hysteresis associated with NMTP and other Mn-based NASICON cathode materials.

2.
Int J Biol Sci ; 18(15): 5698-5712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263164

RESUMEN

Background: Cholangiocarcinoma (CCA) is a type of hepatobiliary cancer characterized by uncontrolled cell proliferation, with a poor prognosis and high mortality. Nobiletin (NBT) is a promising anti-tumor compound derived from the peels of oranges and other citrus plants, citrus plant. But the effect of NBT on CCA remains unknown. Results: Our data showed that NBT suppressed CCA cell proliferation in vitro and in vivo. Colony formation and Edu assay indicated that NBT inhibited cell proliferation. Cell cycle analysis showed that NBT arrested the cell cycle in G0/G1 phase. Target prediction showed that GSK3ß was a direct target. Western blot and immunofluorescence confirmed that NBT reduced the phosphorylation of GSK3ß. The antiproliferative effect of NBT was intercepted in GSK3ß knockdown CCA cells. The cellular thermal shift assay (CETSA) showed NBT directly bound to GSK3ß. Finally, NBT showed an anti-proliferative effect in tumor-bearing mice with no hepatotoxicity. Conclusion: NBT could inhibit CCA proliferation, and the pharmacological activity of NBT in CCA was attributed to its direct binding to GSK3ß. We suggested that NBT might be a potential natural medicine in CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ratones , Animales , Glucógeno Sintasa Quinasa 3 beta , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Proliferación Celular , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Apoptosis
3.
Fish Shellfish Immunol ; 125: 17-25, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35525410

RESUMEN

C-type lectins (CTLs), as a member of the Ca2+-dependent carbohydrate recognition protein superfamily, play multiple roles in non-self recognition and the elimination of invading pathogens. In this study, a C-type lectin was identified and characterized from the Pacific abalone Haliotis discus hannai (designed as HdClec), and its open reading frame (ORF) encoded a polypeptide of 163 amino acids containing a typical signal peptide and only one carbohydrate-recognition domain (CRD). The deduced amino acid sequence of CRD in HdClec shared identities ranging from 22.4% to 39.8% with that of other identified CRDs of CTLs. A novel NPN motif was found in Ca2+-binding site 2 of HdClec. The mRNA transcripts of HdClec were detectable in all the examined tissues of non-stimulated abalones, with the highest expression in hepatopancreas (224.13-fold of that in gills). The expression of HdClec mRNA in hemocytes was significantly up-regulated after Vibrio harveyi challenge. Recombinant HdClec protein (rHdClec) could bind lipopolysaccharide (LPS) and peptidoglycan (PGN) in vitro in the presence of Ca2+. Coinciding with the PAMPs binding assay, rHdClec displayed broad agglutination activities towards Gram-negative bacteria V. splendidus, V. anguillarum, V. parahaemolyticus, V. harveyi, Escherichia coli, and Gram-positive bacteria Micrococcus luteus. Moreover, rHdClec could significantly elicit the chemotactic response of hemocytes in vitro. And the phagocytosis and encapsulation ability of hemocytes could be significantly enhanced by rHdClec. All these results showed that HdClec could function as pattern recognition receptors (PRRs) and further enhance the opsonization of hemocytes, which might play a crucial role in the innate immune responses of Pacific abalone.


Asunto(s)
Hemocitos , Lectinas Tipo C , Animales , Carbohidratos , Inmunidad Innata/genética , Opsonización , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo
4.
Nanoscale Res Lett ; 11(1): 193, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27071680

RESUMEN

A facile two-step synthesis route combining electrospinning and hydrothermal techniques has been performed to obtain Bi2Ti2O7/TiO2 heterostructured submicron fibers. Bi2Ti2O7 nanosheets were grown on the surface of TiO2 submicron fibers. The density of the nanosheets increased with higher precursor concentration of the Bi/Ti reaction raw materials. UV-visible (UV-vis) diffuse reflectance spectroscopy indicated that the absorption spectrum of the Bi2Ti2O7/TiO2 composite extended into the visible-light region. Photocatalytic tests showed that the Bi2Ti2O7/TiO2 heterostructures possess a much higher degradation rate of rhodamine B than the unmodified TiO2 submicron fibers under visible light. The enhanced photocatalytic activity can be attributed to the synergistic effect between improved visible-light absorption and the internal electric field created by the heterojunctions. The effective separation of photogenerated carriers driven by the photoinduced potential was demonstrated by the photoelectrochemical analysis.

5.
J Chem Phys ; 139(4): 044702, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23901998

RESUMEN

The ferroelectric mechanism of croconic acid in terms of the electronic structure and the molecular structure was studied by first principles using the density functional theory with the generalized gradient approximation. The spontaneous polarization (Ps) was simulated by the Berry phase method. It is found that the large polarization originates from charge transfer due to the strong "push-pull" effect of electron-releasing and -withdrawing groups along the hydrogen bond. According to the characteristics of polarization of croconic acid, we constructed a one-dimensional ferroelectric Hamiltonian model to describe the ferroelectric properties of croconic acid. Based on the Hamiltonian model, the thermal properties of the ferroelectricity of croconic acid were studied by Monte Carlo method. The simulated Curie temperature is 756 K, and the spontaneous polarization keeps well temperature range stability up to 400 K. These results are in good agreement with the experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA