Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 96: 68-75, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771331

RESUMEN

Although female fertility maintenance technology (FFMT) provides an effective option for preserving fertility in patients with cancer suffering from fertility loss due to cancer treatment, previous studies have shown that the technique has certain potential risks and requires an assessment of the health status of the offspring since FFMT may lead to glucose metabolism disorder in offspring mice. The present animal study examined the glucose metabolism of adult mice offspring born from ovarian tissue cryopreservation and orthotopic allotransplantation. The mice were divided into three groups: normal, fresh ovary transplantation, and cryopreserved ovary transplantation. We recorded fasting blood glucose, glucose tolerance, and fasting serum insulin level for six months. Liver DNA, RNA, and proteins were extracted to detect the interaction between DNA methylation and Grb10 expression and insulin signaling pathway factors such as P-IGF1R, P-IRS2, P-AKT, and Grb10. Female recipient mice that received FFMT could successfully give birth after mating. The average litter size and total litter size of the cryopreserved and fresh groups showed marked differences compared with the normal group. Compared with the normal group, the fasting blood glucose and fasting serum insulin levels were higher in the cryopreserved and fresh groups. The mRNA and protein expressions of Grb10 were higher in the fresh and cryopreserved groups. Compared with the normal group, the DNA methylation status of four of the 11 sites of the Grb10 promoter was lower in the cryopreserved group. Grb10 overexpression inhibited the downstream phosphorylation protein factor expression (p-IGF-1R, p-IRS2, and p-Akt) of the IGF-1R signaling pathway. Female fertility maintenance technology (FFMT), including ovarian tissue cryopreservation (OTC), and orthotopic allotransplantation techniques might lead to glucose metabolism disorders in offspring mice.


Asunto(s)
Criopreservación , Trastornos del Metabolismo de la Glucosa , Animales , Criopreservación/métodos , Femenino , Humanos , Mantenimiento , Ratones , Ovario , Tecnología
2.
J Ovarian Res ; 10(1): 5, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28095884

RESUMEN

BACKGROUD: Ovarian transplantation is a useful method for preserving the fertility of young women with cancer who undergo radiotherapy and chemotherapy. Follicle-stimulating hormone (FSH) is use to protect transplanted ovarian tissues from ischemia injury through promoting revascularization after transplantation, but the side effect of high level FSH is ovarian overstimulation leading to substantial follicular loss. In this study, we investigated the optimal usage of FSH on revascularization in the in vitro cultured ovarian tissues before and after transplantation. RESULTS: FSH mainly exhibited an additive response in the gene and protein expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and follicle stimulating hormone receptor (FSHR) with its raised concentrations (0.15 IU/ml, 0.30 IU/ml and 0.60 IU/ml) and prolonged treatment (3 h, 6 h, 12 h, 24 h). The concentrations with 0.60 IU/ml FSH could obviously promoted the expression of VEGF, bFGF and FSHR, but under this concentration FSH could also overstimulated the ovarian tissue leading to follicular loss. With the increase of culture time, the gene and protein expression of VEGF and bFGF both were up-regulated in all of the FSH added groups, but FSHR expression decreased when culture time exceeded 12 h. So we chose 0.30 IU/ml FSH added concentration and 6 h culture time as the FSH usage condition in functional revascularization verification experiment, and found that under this condition FSH promoted 2.5 times increase of vascular density in treated group than in control group after ovarian tissues transplantation. CONCLUSION: Ovarian intervention with 0.30 IU/ml FSH for 6 h is an optimal FSH usage condition which could accelerate the revascularization in the allotransplanted ovarian tissue and can not produce ovarian overstimulation.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Neovascularización Fisiológica , Trasplante de Órganos , Ovario/irrigación sanguínea , Ovario/trasplante , Animales , Biomarcadores , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Expresión Génica , Inmunohistoquímica , Ratones , Ovario/metabolismo , Receptores de HFE/genética , Receptores de HFE/metabolismo , Trasplante Homólogo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...