Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(3): 610-621, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36008706

RESUMEN

Mitochondrial dynamics, including mitochondrial fission and fusion, are critical for maintaining mitochondrial functions. Evidence shows that TANK-binding kinase 1 (TBK1) regulates mitochondrial fusion and fission and then mitophagy. Since a previous study demonstrates a strong correlation between mitophagy and osteoarthritis (OA), we herein investigated the potential role of TBK1 in OA process and mitochondrial functions. We demonstrated a strong correlation between TBK1 and OA, evidenced by significantly downregulated expression of TBK1 in cartilage tissue samples of OA patients and in the chondrocytes of aged mice, as well as TNF-α-stimulated phosphorylation of TBK1 in primary mouse chondrocytes. TBK1 overexpression significantly attenuated TNF-α-induced apoptosis and abnormal mitochondrial function in primary mouse chondrocytes. Furthermore, TBK1 overexpression induced remodeling of mitochondrial morphology by directly phosphorylating dynamin-related protein 1 (DRP1) at Ser637, abolishing the fission of DRP1 and preventing its fragmentation function. Moreover, TBK1 recruitment and DRP1 phosphorylation at Ser637 was necessary for engulfing damaged mitochondria by autophagosomal membranes during mitophagy. Moreover, we demonstrated that APMK/ULK1 signaling contributed to TBK1 activation. In OA mouse models established by surgical destabilization of the medial meniscus, intraarticular injection of lentivirus-TBK1 significantly ameliorated cartilage degradation via regulation of autophagy and alleviation of cell apoptosis. In conclusion, our results suggest that the TBK1/DRP1 pathway is involved in OA and pharmacological targeting of the TBK1-DRP1 cascade provides prospective therapeutic benefits for the treatment of OA.


Asunto(s)
Dinámicas Mitocondriales , Factor de Necrosis Tumoral alfa , Ratones , Animales , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo , Autofagia/fisiología , Dinaminas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
2.
PLoS One ; 9(3): e89123, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598793

RESUMEN

Traditional Chinese medicine (TCM) has unique therapeutic effects for complex chronic diseases. However, for the lack of an effective systematic approach, the research progress on the effective substances and pharmacological mechanism of action has been very slow. In this paper, by incorporating network biology, bioinformatics and chemoinformatics methods, an integrated approach was proposed to systematically investigate and explain the pharmacological mechanism of action and effective substances of TCM. This approach includes the following main steps: First, based on the known drug targets, network biology was used to screen out putative drug targets; Second, the molecular docking method was used to calculate whether the molecules from TCM and drug targets related to chronic kidney diseases (CKD) interact or not; Third, according to the result of molecular docking, natural product-target network, main component-target network and compound-target network were constructed; Finally, through analysis of network characteristics and literature mining, potential effective multi-components and their synergistic mechanism were putatively identified and uncovered. Bu-shen-Huo-xue formula (BSHX) which was frequently used for treating CKD, was used as the case to demonstrate reliability of our proposed approach. The results show that BSHX has the therapeutic effect by using multi-channel network regulation, such as regulating the coagulation and fibrinolytic balance, and the expression of inflammatory factors, inhibiting abnormal ECM accumulation. Tanshinone IIA, rhein, curcumin, calycosin and quercetin may be potential effective ingredients of BSHX. This research shows that the integration approach can be an effective means for discovering active substances and revealing their pharmacological mechanisms of TCM.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Biología Computacional , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...