Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Inorg Chem ; 63(29): 13181-13185, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38985134

RESUMEN

The development of a low-cost and efficient oxygen evolution reaction (OER) electrode is of critical importance for water electrolysis technologies. The general approach to achieving a high-efficiency OER electrode is to regulate catalytic material structures by synthetic control. Here we reported an orthogonal approach to obtaining the OER electrode without intentional design and synthesis, namely, recycling MnO2 cathodes from failed rechargeable aqueous batteries and investigating them as ready-made catalytic electrodes. The recycled MnO2 cathode showed very little Zn2+ storage capacity but surprisingly high OER activity with a low overpotential of 307 mV at 10 mA cm-2 and a small Tafel slope of 77.9 mV dec-1, comparable to the state-of-the-art RuO2 catalyst (310 mV, 86.9 mV dec-1). In situ electrochemical and theoretical studies jointly revealed that the accelerated OER kinetics of the recycled MnO2 electrode was attributed to the enlarged active surface area of MnO2 and optimized electronic structure of Mn sites. This work suggests failed battery cathodes as successful catalysis electrodes for sustainable energy development.

2.
Angew Chem Int Ed Engl ; : e202407658, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982589

RESUMEN

Metallene is considered as an emerging family of electrocatalysts due to its atomically layered structure and unique surface stress. Here we propose a strategy to modulate the Bader charge transfer (BCT) between Pd surface and oxygenated intermediates via p-d electronic interaction by introducing single-atomp-block metal (M = In, Sn, Pb, Bi) into Pd metallene nanosheets towards efficient oxygen reduction reaction (ORR). X-ray absorption and photoelectron spectroscopy suggests that doping p-block metals could facilitate electron transfer to Pd sites and thus downshift the d-band center of Pd and weaken the adsorption energy of O intermediates. Among them, the developed Bi-Pd metallene shows extraordinarily high ORR mass activity of 11.34 A mgPd-1 and 0.86 A mgPd-1 at 0.9 V and 0.95 V in alkaline solution, respectively, representing the best Pd-based ORR electrocatalysts ever reported. In the cathode of a Zinc-air battery, Bi-Pd metallene could achieve an open-circuit voltage of 1.546 V and keep stable for 760 h at 10 mA cm-2. Theoretical calculations suggest that the BCT between Pd surface and *OO intermediates greatly affects the bond length between them (dPd-*OO) and Bi doping could appropriately reduce the amount of BCT and stretch the dPd-*OO, thus enhancing the ORR activity.

3.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39052320

RESUMEN

Biofilm is a group of heterogeneously structured and densely packed bacteria with limited access to nutrients and oxygen. These intrinsic features can allow a mono-species biofilm to diversify into polymorphic subpopulations, determining the overall community's adaptive capability to changing ecological niches. However, the specific biological functions underlying biofilm diversification and fitness adaptation are poorly demonstrated. Here, we launched and monitored the experimental evolution of Pseudomonas aeruginosa biofilms, finding that two divergent molecular trajectories were adopted for adaptation to higher competitive fitness in biofilm formation: one involved hijacking bacteriophage superinfection to aggressively inhibit kin competitors, whereas the other induced a subtle change in cyclic dimeric guanosine monophosphate signaling to gain a positional advantage via enhanced early biofilm adhesion. Bioinformatics analyses implicated that similar evolutionary strategies were prevalent among clinical P. aeruginosa strains, indicative of parallelism between natural and experimental evolution. Divergence in the molecular bases illustrated the adaptive values of genomic plasticity for gaining competitive fitness in biofilm formation. Finally, we demonstrated that these fitness-adaptive mutations reduced bacterial virulence. Our findings revealed how the mutations intrinsically generated from the biofilm environment influence the evolution of P. aeruginosa.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Aptitud Genética , Adaptación Fisiológica , Virulencia , Mutación , Bacteriófagos/genética , Bacteriófagos/fisiología , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Sobreinfección/microbiología , Evolución Biológica
4.
Life Sci ; 351: 122821, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880167

RESUMEN

AIMS: To explore the clinical significance of OLC1 and cigarette smoking in bladder urothelial carcinoma (UBC). MATERIALS AND METHODS: OLC1 mRNA expression was detected in 106 UBC samples by mRNA array or reverse real-time PCR. OLC1 protein expression in 114 UBC samples was detected by immunohistochemical staining. Wild-type C57BL/6J mice were injected with cigarette smoke condensate (n = 12) or exposed to cigarette smoke (n = 6) to investigate the correlations between cigarette smoking and OLC1 expression using mRNA array. KEY FINDINGS: The mRNA and protein expression of OLC1 were higher in tumor samples (p < 0.01) and significantly correlated with tumor stage (p < 0.05). OLC1 protein expression and smoking history were correlated with disease-free survival (p < 0.05). OLC1 expression was significantly elevated in smoking patients with higher smoking intensity on both mRNA and protein levels (p < 0.05). Cigarette smoke exposure experiments revealed that OLC1 mRNA overexpressed in bladder uroepithelium of mice. SIGNIFICANCE: OLC1 could serve as a potential prognosis biomarker of UBC, especially for smoking patients.


Asunto(s)
Fumar Cigarrillos , Ratones Endogámicos C57BL , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Ratones , Pronóstico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/genética , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Carcinoma de Células Transicionales/metabolismo
5.
Imeta ; 3(3): e186, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898993

RESUMEN

DNA methylation serves as the primary mode of epigenetic regulation in prokaryotes, particularly through transcriptional regulation. With the rapid implementation of third-generation sequencing technology, we are currently experiencing a golden age of bacterial epigenomics. However, there has been a lack of comprehensive research exploring the versatility and consequential impact of bacterial DNA methylome on cellular and physiological functions. There is a critical need for a user-friendly bioinformatics tool that can effectively characterize DNA methylation modification features and predict the regulation patterns. To address this gap, the current study introduces Bacmethy, an innovative tool that utilizes SMRT-seq data and offers a range of analytical modules. First, the tool classifies methylation sites in the genome, highlighting the distinct regulations present under varying modification fractions and location enrichment. Furthermore, this tool enables us to identify regulatory region methylation and potential cis and trans interactions between methylation sites and regulatory effectors. Using benchmark data sets and our data, we show that our tool facilitates the understanding of the distinctive traits of DNA methylation modifications and predicts transcriptional regulation effects on important physiological and pathological functions. Bacmethy code is freely available, and the Docker image is downloadable. Bacmethy has been made available as a user-friendly web server interface at https://bacmethy.med.sustech.edu.cn.

6.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915638

RESUMEN

In schizophrenia, layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC) are thought to receive fewer excitatory synaptic inputs and to have lower expression levels of activity-dependent genes and of genes involved in mitochondrial energy production. In concert, these findings from previous studies suggest that DLPFC L3PNs are hypoactive in schizophrenia, disrupting the patterns of activity that are crucial for working memory, which is impaired in the illness. However, whether lower PN activity produces alterations in inhibitory and/or excitatory synaptic strength has not been tested in the primate DLPFC. Here, we decreased PN excitability in rhesus monkey DLPFC in vivo using adeno-associated viral vectors (AAVs) to produce Cre recombinase-mediated overexpression of Kir2.1 channels, a genetic silencing tool that efficiently decreases neuronal excitability. In acute slices prepared from DLPFC 7-12 weeks post-AAV microinjections, Kir2.1-overexpressing PNs had a significantly reduced excitability largely attributable to highly specific effects of the AAV-encoded Kir2.1 channels. Moreover, recordings of synaptic currents showed that Kir2.1-overexpressing DLPFC PNs had reduced strength of excitatory synapses whereas inhibitory synaptic inputs were not affected. The decrease in excitatory synaptic strength was not associated with changes in dendritic spine number, suggesting that excitatory synapse quantity was unaltered in Kir2.1-overexpressing DLPFC PNs. These findings suggest that, in schizophrenia, the excitatory synapses on hypoactive L3PNs are weaker and thus might represent a substrate for novel therapeutic interventions. Significance Statement: In schizophrenia, dorsolateral prefrontal cortex (DLPFC) pyramidal neurons (PNs) have both transcriptional and structural alterations that suggest they are hypoactive. PN hypoactivity is thought to produce synaptic alterations in schizophrenia, however the effects of lower neuronal activity on synaptic function in primate DLPFC have not been examined. Here, we used, for the first time in primate neocortex, adeno-associated viral vectors (AAVs) to reduce PN excitability with Kir2.1 channel overexpression and tested if this manipulation altered the strength of synaptic inputs onto the Kir2.1-overexpressing PNs. Recordings in DLPFC slices showed that Kir2.1 overexpression depressed excitatory (but not inhibitory), synaptic currents, suggesting that, in schizophrenia, the hypoactivity of PNs might be exacerbated by reduced strength of the excitatory synapses they receive.

7.
Chem Commun (Camb) ; 60(58): 7467-7470, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38934088

RESUMEN

A finely controlled concentration polarization environment was deliberately created to fabricate a three-dimensional ordered Zn metal anode with (002)-dominated planes, which enabled a high-rate aqueous Ni-Zn pouch cell with a high discharge capacity of 187.3 mA h g-1 at 50 C, and a capacity retention of 94.7% and an average Coulombic efficiency of 99.8% for 500 charge/discharge cycles.

8.
Mar Drugs ; 22(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38921594

RESUMEN

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Asunto(s)
Plaquetas , Células Endoteliales de la Vena Umbilical Humana , Sepsis , Factor de von Willebrand , Animales , Sepsis/tratamiento farmacológico , Factor de von Willebrand/metabolismo , Humanos , Ratones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Masculino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Permeabilidad Capilar/efectos de los fármacos
9.
Microbiol Res ; 285: 127750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761489

RESUMEN

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Coronavirus Humano OC43 , Transcriptoma , Replicación Viral , Vía de Señalización Wnt , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular , Humanos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/metabolismo , Antivirales/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Alanina/metabolismo , Animales , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/tratamiento farmacológico
10.
Cell Biosci ; 14(1): 52, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649908

RESUMEN

BACKGROUND AND AIMS: The evolution of demyelination in individual internodes remains unclear although it has been noticed the paranodal demyelination precedes internodal demyelination in neuropathies with diverse aetiologies. For therapeutic purpose, it is fundamental to know whether the demyelinating procedure in affected internodes can be interrupted. This study aimed to delineate the development of demyelination in individual internodes in avian riboflavin deficient neuropathy. METHODS: Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin, a riboflavin deficient diet containing 1.8 mg/kg riboflavin, or initially a riboflavin deficient diet for 11 days and then routine diet plus riboflavin repletion from day 12. Evolution of demyelination in individual internodes was analyzed by teased nerve fibre studies from day 11 to 21. RESULTS: In riboflavin deficient chickens, demyelination was the predominant feature: it was mainly confined to the paranodal region at day 11; extended into internodal region, but less than half of the internodal length in most affected internodes at day 16; involved more than half or whole internode at day 21. In the internode undergoing demyelination, myelin degeneration of varying degrees was noticed in the cytoplasm of the Schwann cell wrapping the internode. Two days after riboflavin repletion, co-existence of remyelination and active demyelination within individual internodes was noticed. Remyelination together with preserved short original internodes was the characteristic feature 4 and 9 days after riboflavin repletion. CONCLUSION: Riboflavin repletion interrupts the progression from paranodal to internodal demyelination in riboflavin deficient chickens and promotes remyelination before complete internodal demyelination.

11.
Nutr Metab Cardiovasc Dis ; 34(6): 1407-1415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664127

RESUMEN

BACKGROUND AND AIMS: The associations between dietary vitamin C (VC), vitamin E (VE) intake and aortic aneurysm and dissection (AAD) remain unclear. This study aimed to prospectively investigate the associations between dietary VC and VE with the incident risk of AAD. METHODS AND RESULTS: A total of 139 477 participants of UK Biobank cohort were included in the analysis. Dietary VC and VE consumptions were acquired through a 24-h recall questionnaire. Cox proportional regression models were used to examine the associations between VC, VE intake and the risk of AAD. Incident AAD was ascertained through hospital inpatient records and death registers. During a median follow-up of 12.5 years, 962 incident AAD events were documented. Both dietary VC [adjusted hazard ratio (HR), 0.77; 95 % confidence intervals (CI), 0.63-0.93; P-trend = 0.008] and VE (adjusted HR, 0.70; 95 % CI, 0.57-0.87; P-trend = 0.002) were inversely associated with incident AAD when comparing the participants in the highest quartile with those in the lowest. In subgroup analyses, the associations were more pronounced in participants who were over 60 years old, participants with smoking history, hypertension or hyperlipidemia, who were under the high risk of AAD. CONCLUSION: Higher dietary VC and VE intakes are associated with reduced risk of AAD. Our study emphasizes the importance of diet adjustment strategies targeted on VC and VE to lower the incidence rate of AAD especially in the high-risk population.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Ácido Ascórbico , Factores Protectores , Vitamina E , Humanos , Masculino , Estudios Prospectivos , Persona de Mediana Edad , Femenino , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/efectos adversos , Vitamina E/administración & dosificación , Factores de Riesgo , Anciano , Incidencia , Disección Aórtica/epidemiología , Disección Aórtica/prevención & control , Aneurisma de la Aorta/epidemiología , Aneurisma de la Aorta/prevención & control , Medición de Riesgo , Reino Unido/epidemiología , Factores de Tiempo , Dieta/efectos adversos , Adulto
12.
Inorg Chem ; 63(13): 5773-5778, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38498977

RESUMEN

Seawater electrolysis presents a promising avenue for green hydrogen production toward a carbon-free society. However, the electrode materials face significant challenges including severe chlorine-induced corrosion and high reaction overpotential, resulting in low energy conversion efficiency and low current density operation. Herein, we put forward a nanoporous nickel (npNi) cathode with high chlorine corrosion resistance for energy-efficient seawater electrolysis at industrial current densities (0.4-1 A cm-2). With the merits of an electrostatic chlorine-resistant surface, modulated Ni active sites, and a robust three-dimensional open structure, the npNi electrode showed a low hydrogen evolution reaction overpotential of 310 mV and a high electricity-hydrogen conversion efficiency of 59.7% at 400 mA cm-2 in real seawater and outperformed most Ni-based seawater electrolysis cathodes in recent publications and the commercial Ni foam electrode (459 mV, 46.4%) under the same test condition. In situ electrochemical impedance spectroscopy, high-frame-rate optical microscopy, and first-principles calculation revealed that the improved corrosion resistance, enhanced intrinsic activity, and mass transfer were responsible for the lowered electrocatalytic overpotential and enhanced energy efficiency.

13.
Nano Lett ; 24(11): 3331-3338, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457459

RESUMEN

1T-MoS2 has become an ideal anode for sodium-ion batteries (SIBs). However, the metastable feature of 1T-MoS2 makes it difficult to directly synthesize under normal conditions. In addition, it easily transforms into 2H phase via restacking, resulting in inferior electrochemical performance. Herein, the electron configuration of Mo 4d orbitals is modulated and the stable 1T-MoS2 is constructed by nickel (Ni) introduction (1T-Ni-MoS2). The original electron configuration of Mo 4d orbitals is changed via the electron injection by Ni, which triggers the phase transition from 2H to 1T phase, thus improving the electrical conductivity and accelerating the redox kinetics of the material. Consequently, 1T-Ni-MoS2 exhibits superior rate capability (266.8 mAh g-1 at 10 A g-1) and excellent cycle life (358.7 mAh g-1 at 1 A g-1 after 350 cycles). In addition, the assembled Na3V2(PO4)3/C||1T-Ni-MoS2 full cells deliver excellent electrochemical properties and show great prospects in energy storage devices.

14.
Small ; 20(30): e2312168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38377284

RESUMEN

Hydroxides are the archetype of layered crystals with metal-oxygen (M-O) octahedron units, which have been widely investigated as oxygen evolution reaction (OER) catalysts. However, the better crystallinity of hydroxide materials, the more perfect octahedral symmetry and atomic ordering, resulting in the less exposed metal sites and limited electrocatalytic activity. Herein, a glassy state hydroxide material featuring with short-range order and long-range disorder structure is developed to achieve high intrinsic activity for OER. Specifically, a rapid freezing point precipitation method is utilized to fabricate amorphous multi-component hydroxide. Owing to the freezing-point crystallization environment and chaotic M-O (M = Ni/Fe/Co/Mn/Cr etc.) structures, the as-fabricated NiFeCoMnCr hydroxide exhibit a highly-disordered glassy structure, as-confirmed by X-ray/electron diffraction, enthalpic response, and pair distribution function analysis. The as-achieved glassy-state hydroxide materials display a low OER overpotential of 269 mV at 20 mA cm-2 with a small Tafel slope of 33.3 mV dec-1, outperform the benchmark noble-metal RuO2 catalyst (341 mV, 84.9 mV dec-1) . Operando Raman and density functional theory studies reveal that the glassy state hydroxide converted into disordered active oxyhydroxide phase with optimized oxygen intermediates adsorption under low OER overpotentials, thus boosting the intrinsic electrocatalytic activity.

15.
J Am Chem Soc ; 146(3): 2033-2042, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206169

RESUMEN

Surface polarization under harsh electrochemical environments usually puts catalysts in a thermodynamically unstable state, which strictly hampers the thermodynamic stability of Pt-based catalysts in high-performance fuel cells. Here, we report a strategy by introducing electron buffers (variable-valence metals, M = Ti, V, Cr, and Nb) into intermetallic Pt alloy nanoparticle catalysts to suppress the surface polarization of Pt shells using the structurally ordered L10-M-PtFe as a proof of concept. Operando X-ray absorption spectra analysis suggests that with the potential increase, electron buffers, especially Cr, could facilitate an electron flow to form a electron-enriched Pt shell and thus weaken the surface polarization and tensile Pt strain. The best-performing L10-Cr-PtFe/C catalyst delivers superb oxygen reduction reaction (ORR) activity (mass activity = 1.41/1.02 A mgPt-1 at 0.9 V, rated power density = 14.0/9.2 W mgPt-1 in H2-air under a total Pt loading of 0.075/0.125 mgPt cm-2, respectively) and stability (20 mV voltage loss at 0.8 A cm-2 after 60,000 cycles of accelerated durability test) in a fuel cell cathode, representing one of the best reported ORR catalysts. Density functional theory calculations reveal that the optimized surface strain by introducing Cr on L10-PtFe/C accounts for the enhanced ORR activity, and the durability enhancement stems from the charge transfer contribution of Cr to the Pt shells and the increased kinetic energy barrier for Pt dissolution/Fe diffusion.

16.
World J Gastrointest Oncol ; 16(1): 110-117, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38292839

RESUMEN

BACKGROUND: The incidence of gastric cancer remains high, and it is the sixth most common cancer and the fourth leading cause of cancer deaths worldwide. Oral contrast-enhanced ultrasonography is a simple, non-invasive, and painless method for the diagnosis of gastric tumors. AIM: To explore the diagnostic value of oral contrast-enhanced ultrasonography for the detection of gastric tumors. METHODS: The screening results based on oral contrast-enhanced ultrasonography and electronic gastroscopy were compared with those of the postoperative pathological examination. RESULTS: Among 42 patients with gastric tumors enrolled in the study, the diagnostic accordance rate was 95.2% for oral contrast-enhanced ultrasonography (n = 40) and 90.5% for electronic gastroscopy (n = 38) compared with postoperative pathological examination. The Kappa value of consistency test with pathological findings was 0.812 for oral contrast-enhanced ultrasonography and 0.718 for electronic gastroscopy, and there was no significant difference between them (P = 0.397). For the TNM staging of gastric tumors, the accuracy rate of oral contrast-enhanced ultrasonography was 81.9% for the overall T staging and 50%, 77.8%, 100%, and 100% for T1, T2, T3, and T4 staging, respectively. The sensitivity and specificity were both 100% for stages T3 and T4. The diagnostic accuracy rate of oral contrast-enhanced ultrasonography was 93.8%, 80%, 100%, and 100% for stages N0, N1-N3, M0, and M1, respectively. CONCLUSION: The accordance rate of qualitative diagnosis by oral contrast-enhanced ultrasonography is comparable to that of gastroscopy, and it could be used as the preferred method for the early screening of gastric tumors.

17.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242263

RESUMEN

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Asunto(s)
Carpas , Ferroptosis , Bifenilos Polibrominados , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Antioxidantes/metabolismo , Receptor Toll-Like 4/genética , Carpas/metabolismo , Branquias , Polifenoles/farmacología , Polifenoles/metabolismo , Transducción de Señal , Proteínas de Peces , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo , Apoptosis , Té/metabolismo
18.
Chinese Journal of Geriatrics ; (12): 234-239, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1028267

RESUMEN

Objective:To develop a prediction model using machine learning to identify anxiety and depression in elderly individuals.Methods:This study collected data from 15079 elderly individuals in Shanxi Province, including their social demographic factors and disease status.Anxiety and depression were evaluated using GAD-7 and PHQ-9 scales to understand the characteristics of mental illness in the elderly.The evaluation indexes included accuracy, recall, precision, F1 score, Receiver Operating Characteristic Curve(ROC), and area under the curve(AUC), which were derived from the confusion matrix and several models.Results:The output of our study clearly demonstrates that the full feature prediction based on LightGBM is highly accurate, with an AUC of 0.805[95% CI: 0.794-0.811]. This outperforms the Random Forest model, which achieved an AUC of 0.730[95% CI: 0.702-0.741], and the XGboost model, which achieved an AUC of 0.802[95% CI: 0.780-0.807]. Therefore, LightGBM algorithm proves to be a strong prediction model.Our simplified model, based on eight selected features, also achieves a respectable AUC of approximately 0.75. Conclusions:The new prediction model for anxiety and depression specifically designed for the elderly can be effectively utilized in grassroots health surveys or for self-examinations to efficiently predict anxiety and depression levels among the elderly population in the community.

19.
Aquat Toxicol ; 265: 106780, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041969

RESUMEN

Microplastics (MPs) are widely distributed pollutants in the environment and accumulate in the aquatic environment due to human activities. Carp, a common edible aquatic organism, has been found to accumulate MPs in body. MicroRNA (miRNAs) is a non-coding short RNA that regulates protein expression by binding to target genes in various physiological processes such as proliferation, differentiation and apoptosis. The ovary is a crucial role in carp reproduction. In this study, we established a model of carp exposed to polyethylene microplastics (PE-MPs) in the aquatic environment to investigate the specific mechanism of PE-MPs causing ovarian injury and the involvement of miR-132/calpain (CAPN) axis. H&E stained sections revealed that PE-PMs induced inflammation in ovarian tissues and impaired oocyte development. TUNEL analysis showed an increased rate of apoptosis in ovarian cells treated with PE-PMs. RT-PCR and Western Blot assays confirmed that exposure to PE-MPs significantly decreased miR-132 expression while increasing CAPN expression at both mRNA and protein levels. The concentration of calcium ions was significantly increased in tissues, leading to CAPN enzyme activity increase. The expression of mitochondrial damage-related genes (bax, AIF, cyt-c, caspase-7, caspase-9, and caspase-3) was higher while the expression of anti-apoptotic genes (bcl-2 and bcl-xl) was lower. Protein levels of bax, AIF, caspase-3, bcl-2 and bcl-xl changed accordingly with the genetic alterations. Additionally, we discovered that PE-MPs can activate the p65 factor through the TRAF6/NF-kB pathway resulting in elevated production of pro-inflammatory factors IL-6, IL-1ß and TNF-a which contribute to ovarian inflammation development. This study investigates the impact of PE-MPs on carp ovarian function and provides insights into miRNAs' role and their target genes.


Asunto(s)
Carpas , MicroARNs , Contaminantes Químicos del Agua , Animales , Femenino , Humanos , Microplásticos , Polietileno , Caspasa 3/genética , Plásticos , Calpaína , Proteína X Asociada a bcl-2 , Ovario , Contaminantes Químicos del Agua/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2/genética , MicroARNs/genética , Apoptosis/genética , Inflamación/inducido químicamente
20.
Diabetes Metab ; 49(5): 101472, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37678759

RESUMEN

AIM: To examine the associations between serum albumin and the incidences of diabetes and diabetic microvascular complications in participants of the UK Biobank cohort. METHODS: There were 398,146 participants without diabetes and 30,952 patients with diabetes from the UK Biobank cohort included in this study. Multivariate-adjusted Cox proportional hazard models were used to analyze the association of albumin with the incidences of diabetes and diabetic microvascular complications. Mendelian randomization (MR) analysis was used to determine the genetic relationships between serum albumin and diabetes. RESULTS: After a median 12.90 years follow-up, 14,710 participants developed incident diabetes (58.83 ± 7.52 years, 56.10% male). After multivariate adjustment, serum albumin was inversely associated with incident diabetes: hazard ratio (HR) [95% confidence interval] per 10 g/l increase 0.88 [0.82;0.94]. MR analyses suggested a potential genetic influence of serum albumin on diabetes in both the UK Biobank and the FinnGen consortium: odds ratios (ORs) [95% confidence interval per 1 g/l increase 0.99 [0.98;1.00] and 0.78 [0.67;0.92], respectively. In patients with diabetes, higher serum albumin levels were significantly associated with lower risk for diabetic microvascular complications. Specifically, per 10 g/l increase in serum albumin, the HRs for diabetic nephropathy, ophthalmopathy, and neuropathy were 0.42 [0.30;0.58], 0.61 [0.52;0.72], and 0.67 [0.51;0.88], respectively. CONCLUSION: In this large prospective study, serum levels of albumin were inversely associated with the incidences of diabetes and diabetic microvascular complications. These findings underscore the importance of maintaining optimal nutrient status in reducing the risk of diabetes and its complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Nefropatías Diabéticas , Humanos , Masculino , Femenino , Estudios Prospectivos , Albúmina Sérica , Bancos de Muestras Biológicas , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/complicaciones , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/complicaciones , Reino Unido/epidemiología , Factores de Riesgo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA