Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400062, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536125

RESUMEN

This study evaluated the potential of isoCoQ-Carbazole, a diheterocyclic analog of isoCA-4, as an anti-tumor agent. To overcome its low aqueous solubility, liposomes were developed as a delivery system for the compound. In vitro experiments showed that loaded liposomes exhibited similar activity to the free form on multiple human tumor cell lines. In vivo experiments using a palliative intratumoral injection chemotherapy approach further demonstrated that isoCoQ-Carbazole loaded liposomes significantly reduced tumor growth in a CA-4-resistant HT29 cell model, without inducing any observable toxicity or weight loss in the treated mice. These findings suggest that liposomal isoCoQ-Carbazole may hold promise as a potential therapeutic agent for the treatment of inoperable, radiation-insensitive cancers.

2.
Arthritis Rheumatol ; 76(1): 18-31, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527031

RESUMEN

OBJECTIVE: We previously reported an increased expression of microRNA-155 (miR-155) in the blood monocytes of patients with rheumatoid arthritis (RA) that could be responsible for impaired monocyte polarization to anti-inflammatory M2-like macrophages. In this study, we employed two preclinical models of RA, collagen-induced arthritis and K/BxN serum transfer arthritis, to examine the therapeutic potential of antagomiR-155-5p entrapped within PEGylated (polyethylene glycol [PEG]) liposomes in resolution of arthritis and repolarization of monocytes towards the anti-inflammatory M2 phenotype. METHODS: AntagomiR-155-5p or antagomiR-control were encapsulated in PEG liposomes of 100 nm in size and -10 mV in zeta potential with high antagomiR loading efficiency (above 80%). Mice were injected intravenously with 1.5 nmol/100 µL PEG liposomes containing antagomiR-155-5p or control after the induction of arthritis. RESULTS: We demonstrated the biodistribution of fluorescently tagged PEG liposomes to inflamed joints one hour after the injection of fluorescently tagged PEG liposomes, as well as the liver's subsequent accumulation after 48 hours, indicative of hepatic clearance, in mice with arthritis. The injection of PEG liposomes containing antagomiR-155-5p decreased arthritis score and paw swelling compared with PEG liposomes containing antagomiR-control or the systemic delivery of free antagomiR-155-5p. Moreover, treatment with PEG liposomes containing antagomiR-155-5p led to the restoration of bone marrow monocyte defects in anti-inflammatory macrophage differentiation without any significant functional change in other immune cells, including splenic B and T cells. CONCLUSION: The injection of antagomiR-155-5p encapsulated in PEG liposomes allows the delivery of small RNA to monocytes and macrophages and reduces joint inflammation in murine models of RA, providing a promising strategy in human disease.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , MicroARNs , Humanos , Ratones , Animales , Antagomirs/metabolismo , Antagomirs/uso terapéutico , Liposomas/metabolismo , Liposomas/uso terapéutico , Distribución Tisular , Macrófagos , Antiinflamatorios/uso terapéutico , MicroARNs/metabolismo
3.
Pharmaceutics ; 15(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513977

RESUMEN

Reperfusion injuries after a period of cardiac ischemia are known to lead to pathological modifications or even death. Among the different therapeutic options proposed, adenosine, a small molecule with platelet anti-aggregate and anti-inflammatory properties, has shown encouraging results in clinical trials. However, its clinical use is severely limited because of its very short half-life in the bloodstream. To overcome this limitation, we have proposed a strategy to encapsulate adenosine in squalene-based nanoparticles (NPs), a biocompatible and biodegradable lipid. Thus, the aim of this study was to assess, whether squalene-based nanoparticles loaded with adenosine (SQAd NPs) were cardioprotective in a preclinical cardiac ischemia/reperfusion model. Obtained SQAd NPs were characterized in depth and further evaluated in vitro. The NPs were formulated with a size of about 90 nm and remained stable up to 14 days at both 4 °C and room temperature. Moreover, these NPs did not show any signs of toxicity, neither on HL-1, H9c2 cardiac cell lines, nor on human PBMC and, further retained their inhibitory platelet aggregation properties. In a mouse model with experimental cardiac ischemia-reperfusion, treatment with SQAd NPs showed a reduction of the area at risk, as well as of the infarct area, although not statistically significant. However, we noted a significant reduction of apoptotic cells on cardiac tissue from animals treated with the NPs. Further studies would be interesting to understand how and through which mechanisms these nanoparticles act on cardiac cells.

4.
Int J Pharm ; 643: 123227, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37453671

RESUMEN

We have synthesized new lipidic prodrugs of diclofenac by grafting aliphatic chains (C10, C12, C16 and C18) to diclofenac through an ester bond. Their molecular formulas were confirmed through HR-MS and the formation of ester bond by FTIR and NMR spectroscopy. Nanoparticles of the different prodrugs were successfully formulated using emulsion evaporation method and DSPE-PEG2000 as the only excipient. All nanoparticles were spherical and had a size between 110 and 150 nm, PdI ≤ 0.2 and negative Zeta potential values from -30 to -50 mV. In addition, they were stable upon storage at 4 °C up to 30-35 days. The encapsulation efficiency of the prodrug was above 90 % independently of the aliphatic chain length grafted. Nanoparticles did not induce any toxicity on LPS-activated THP-1 cells up to a concentration of 100 µg/mL (equivalent diclofenac) whereas diclofenac sodium salt IC50 was around 20 µg/mL. Following incubation of nanoparticles with LPS-activated THP-1 cells, a dose dependent inhibition of TNF-α was observed comparable to standard diclofenac sodium. Based on in vitro studies representative nanoparticles, Prodrug 3 NPs (C16 aliphatic chain) were selected for further in vitro and in vivo studies. Upon incubation in murine plasma, Prodrug 3 NPs underwent an enzymatic cleavage and almost 70 % of diclofenac was released from nanoparticles in 8 h. In vivo studies on a collagen induced arthritis murine model showed contrasted results: on one hand Prodrug 3 NPs led to a significant decrease of arthritis score and of paw volume compared to PBS after the second injection, on the other hand the third injection induced an important hepatic toxicity with the death of half of the mice from the NP group. To promote the reduction of inflammation while avoiding hepatic toxicity using NPs would require to precisely study the No Observable Adverse Effect Level and the schedule of administration in the future.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Profármacos , Ratones , Animales , Diclofenaco , Profármacos/química , Lipopolisacáridos , Nanopartículas/química , Ésteres
5.
Int J Pharm ; 639: 122946, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37044230

RESUMEN

Dexamethasone is a well-known anti-inflammatory drug readily used to treat many lung diseases. However, its side effects and poor lower airway deposition and retention are significant limitations to its usage. In this work, we developed lipid nanoparticulate platforms loaded with dexamethasone and evaluated their behavior in inflammatory lung models in vitro and in vivo. Dexamethasone-loaded liposomes with an average diameter below 150 nm were obtained using a solvent injection method. Three different formulations were produced with a distinct surface coating (polyethylene glycol, hyaluronic acid, or a mixture of both) as innovative strategies to cross the pulmonary mucus layer and/or target CD44 expressed on alveolar proinflammatory macrophages. Interestingly, while electron paramagnetic spectroscopy showed that surface modifications did not induce any molecular changes in the liposomal membrane, drug loading analysis revealed that adding the hyaluronic acid in the bilayer led to a decrease of dexamethasone loading (from 3.0 to 1.7 w/w%). In vitro experiments on LPS-activated macrophages demonstrated that the encapsulation of dexamethasone in liposomes, particularly in HA-bearing ones, improved its anti-inflammatory efficacy compared to the free drug. Subsequently, in vivo data revealed that while intratracheal administration of free dexamethasone led to an important inter-animals variation of efficacy, dexamethasone-loaded liposomes showed an improved consistency within the results. Our data indicate that encapsulating dexamethasone into lipid nanoparticles is a potent strategy to improve its efficacy after lung delivery.


Asunto(s)
Ácido Hialurónico , Liposomas , Animales , Liposomas/química , Ácido Hialurónico/química , Antiinflamatorios , Macrófagos , Dexametasona
6.
J Control Release ; 356: 434-447, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921722

RESUMEN

Glycosaminoglycan (GAG) replenishment therapy consists of the instillation of GAG solutions directly in the bladder to alleviate Bladder Painful Syndrome/Interstitial Cystitis (BPS/IC). However, several issues were reported with this strategy because the GAG solutions are rapidly eliminated from the bladder by spontaneous voiding, and GAG have low bioadhesive behaviors. Herein, GAG nanomaterials with typical flattened morphology were obtained by a self-assembly process. The formation mechanism of those nanomaterials, denoted as nanoplatelets, involves the interaction of α-cyclodextrin cavity and alkyl chains covalently grafted on the GAG. Three GAG were used in this investigation, hyaluronan (HA), chondroitin sulfate (CS), and heparin (HEP). HA NP showed the best anti-inflammatory activity in an LPS-induced in vitro inflammation model of macrophages. They also exhibited the best therapeutic efficacy in a BPS/IC rat inflammation model. Histological examinations of the bladders revealed that HA NP significantly reduced bladder inflammation and regenerated the bladder mucosa. This investigation could open new perspectives to alleviate BPS/IC through GAG replenishment therapy.


Asunto(s)
Antiinflamatorios , Cistitis Intersticial , Ácido Hialurónico , Enfermedades de la Vejiga Urinaria , Animales , Ratas , Administración Intravesical , Antiinflamatorios/uso terapéutico , Cistitis Intersticial/tratamiento farmacológico , Glicosaminoglicanos/uso terapéutico , Ácido Hialurónico/uso terapéutico , Inflamación/tratamiento farmacológico , Vejiga Urinaria , Nanoestructuras , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico
7.
Biomacromolecules ; 24(2): 667-677, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36599673

RESUMEN

Small interfering RNA (siRNA) holds promise for treating rheumatoid arthritis by inhibiting major cytokines such as tumor necrosis factor-α (TNF-α). We developed original cationic amphiphilic phosphorus dendrons to produce dendriplexes associated with TNF-α siRNA. The dendrons were made of 10 pyrrolidinium end groups and a C17 aliphatic chain. The dendriplexes demonstrated the ability to protect siRNA from nuclease degradation and to promote macrophage uptake. Moreover, they led to potent inhibition of TNF-α expression in the lipopolysaccharide-activated mouse macrophage cell line RAW264.7 in vitro model. A significant anti-inflammatory effect in the murine collagen-induced arthritis model was observed through arthritis scoring and histological observations. These results open up essential perspectives in using this original amphiphilic dendron to reduce the disease burden and improve outcomes in chronic inflammatory diseases.


Asunto(s)
Artritis Experimental , Dendrímeros , Animales , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Factor de Necrosis Tumoral alfa/genética , Antiinflamatorios/farmacología
8.
J Control Release ; 352: 15-24, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209941

RESUMEN

Alveolar macrophages play a crucial role in the initiation and resolution of the immune response in the lungs. Pro-inflammatory M1 alveolar macrophages are an interesting target for treating inflammatory and infectious pulmonary diseases. One commune targeting strategy is to use nanoparticles conjugated with hyaluronic acid, which interact with CD44 overexpressed on the membrane of those cells. Unfortunately, this coating strategy may be countered by the presence on the surface of the nanoparticles of a poly(ethylene glycol) corona employed to improve nanoparticles' diffusion in the lung mucus. This study aims to measure this phenomenon by comparing the behavior in a murine lung inflammation model of three liposomal platforms designed to represent different poly(ethylene glycol) and hyaluronic acid densities (Liposome-PEG, Liposome-PEG-HA and Liposome-HA). In this work, the liposomes were obtained by a one-step ethanol injection method. Their interaction with mucin and targeting ability toward pro-inflammatory macrophages were then investigated in vitro and in vivo in a LPS model of lung inflammation. In vitro, poly(ethylene glycol) free HA-liposomes display a superior targeting efficiency toward M1 macrophages, while the addition of poly(ethylene glycol) induces better mucus mobility. Interestingly in vivo studies revealed that the three liposomes showed distinct cell specificity with alveolar macrophages demonstrating an avidity for poly(ethylene glycol) free HA-liposomes, while neutrophils favored PEGylated liposomes exempt of HA. Those results could be explained by the presence of two forces exercising a balance between mucus penetration and receptor targeting. This study corroborates the importance of considering the site of action and the targeted cells when designing nanoparticles to treat lung diseases.


Asunto(s)
Ácido Hialurónico , Liposomas , Ratones , Animales , Macrófagos Alveolares , Polietilenglicoles , Moco
9.
J Am Chem Soc ; 144(41): 18844-18860, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36193551

RESUMEN

Chemotherapy is almost exclusively administered via the intravenous (IV) route, which has serious limitations (e.g., patient discomfort, long hospital stays, need for trained staff, high cost, catheter failures, infections). Therefore, the development of effective and less costly chemotherapy that is more comfortable for the patient would revolutionize cancer therapy. While subcutaneous (SC) administration has the potential to meet these criteria, it is extremely restrictive as it cannot be applied to most anticancer drugs, such as irritant or vesicant ones, for local toxicity reasons. Herein, we report a facile, general, and scalable approach for the SC administration of anticancer drugs through the design of well-defined hydrophilic polymer prodrugs. This was applied to the anticancer drug paclitaxel (Ptx) as a worst-case scenario due to its high hydrophobicity and vesicant properties (two factors promoting necrosis at the injection site). After a preliminary screening of well-established polymers used in nanomedicine, polyacrylamide (PAAm) was chosen as a hydrophilic polymer owing to its greater physicochemical, pharmacokinetic, and tumor accumulation properties. A small library of Ptx-based polymer prodrugs was designed by adjusting the nature of the linker (ester, diglycolate, and carbonate) and then evaluated in terms of rheological/viscosity properties in aqueous solutions, drug release kinetics in PBS and in murine plasma, cytotoxicity on two different cancer cell lines, acute local and systemic toxicity, pharmacokinetics and biodistribution, and finally their anticancer efficacy. We demonstrated that Ptx-PAAm polymer prodrugs could be safely injected subcutaneously without inducing local toxicity while outperforming Taxol, the commercial formulation of Ptx, thus opening the door to the safe transposition from IV to SC chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Humanos , Ratones , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Profármacos/química , Polímeros/química , Irritantes , Distribución Tisular , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ésteres , Neoplasias/tratamiento farmacológico
10.
ACS Appl Mater Interfaces ; 14(36): 40501-40512, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044427

RESUMEN

We have designed a new Bodipy scaffold for efficient in vivo photoacoustic (PA) imaging of nanoparticles commonly used as drug nanovectors. The new dye has an optimized absorption band in the near-infrared window in biological tissue and a low fluorescence quantum yield that leads to a good photoacoustic generation efficiency. After Bodipy-initiated ring-opening polymerization of lactide, the polylactide-Bodipy was formulated into PEGylated nanoparticles (NPs) by mixing with PLA-PEG at different concentrations. Formulated NPs around 100 nm exhibit excellent PA properties: an absorption band at 760 nm and a molar absorption coefficient in between that of molecular PA absorbers and gold NPs. Highly improved photostability compared to cyanine-labeled PLA NPs as well as innocuity in cultured macrophages were demonstrated. After intravenous injection in healthy animals, NPs were easily detected using a commercial PA imaging system and spectral unmixing, opening the way to their use as theranostic agents.


Asunto(s)
Nanopartículas , Técnicas Fotoacústicas , Animales , Compuestos de Boro , Medios de Contraste , Técnicas Fotoacústicas/métodos , Poliésteres , Polímeros
11.
Int J Pharm ; 624: 121985, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35820519

RESUMEN

Amphotericin B (AmB) is an effective drug to treat visceral leishmaniasis but its use is limited by its poor oral bioavailability. This article describes the in-vivo evaluation of AmB-loaded, lipid-based cochleate systems designed for the oral route. Two different cochleate formulations were studied: one based on the synthetic phospholipid dioleoylphosphatidylserine (DOPS) and another optimized formulation based on a naturally occurring phosphatidylserine (Lipoid PSP70) that would render the formulation more affordable in developing countries. Their antiparasitic activity was evaluated in a mouse model of visceral leishmaniasis. Limited efficacy was observed for the DOPS-based cochleates after three doses of AmB at 1 mg/kg. The Lipoid PSP70-based cochleates were administered either as a buffered suspension or in enteric-coated capsules. AmB-loaded cochleates administered as a suspension at a high dose (3 × 20 mg/kg) exhibited significant antiparasitic activity while AmB-loaded cochleates in enteric-coated capsules at a lower dose (3 × 5 mg/kg) presented a slightly higher significant activity. A pharmacokinetic and biodistribution study in rats was performed with the Lipoid PSP70-based cochleates, with a single oral dose of 7.5 mg AmB/kg. Cochleates in both administration forms led to lower concentrations of Amphotericin B in the plasma than intravenous AmBisome®. However, more accumulation in the organs of interest (liver, spleen) was observed for both presentations of cochleates than for AmBisome® by the oral route. Therefore, cochleate formulations of AmB that could be produced at a cost accessible for developing countries show promise for the treatment of visceral leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmaniasis Visceral , Anfotericina B , Animales , Antiparasitarios , Cápsulas , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Ratones , Ratas , Distribución Tisular
12.
Int J Pharm ; 610: 121213, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34678397

RESUMEN

(R)-CE3F4, a specific inhibitor of EPAC1 (exchange protein directly activated by cAMP type 1), has been demonstrated in vitro and in vivo to reduce hypertrophic signaling contributing to heart failure or to control arrhythmia and has shown promise as a drug candidate. However, (R)-CE3F4 exhibits poor solubility in aqueous media and has shown sensitivity to enzyme hydrolysis in plasma. To overcome these issues, the drug was entrapped in liposomes and lipid nanocapsules. Both systems considerably increased the drug apparent solubility in aqueous media. Among these nanocarriers, lipid nanocapsules offered significant protection in vitro against enzymatic degradation by increasing the (R)-CE3F4 apparent half-life from around 40 min to 6 h. Pharmacokinetics and biodistribution of (R)-CE3F4 radiolabeled or not were studied in healthy C57BL/6 mice. The non-encapsulated 3H-CE3F4 showed a very rapid distribution outside the blood compartment. Similar results were observed when using nanocarriers together with a fast dissociation of 3H-CE3F4 from nanocapsules simultaneously labeled with 14C. Thus, essential preclinical information on CE3F4 fate has been obtained, as well as the impact of its formulation using lipid-based nanocarriers.


Asunto(s)
Nanocápsulas , Animales , Lípidos , Liposomas , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
13.
Artículo en Inglés | MEDLINE | ID: mdl-34666890

RESUMEN

The CE3F4 is an inhibitor of the type 1 exchange protein directly activated by cAMP (EPAC1), which is involved in numerous signaling pathways. The inhibition of EPAC1 shows promising results in vitro and in vivo in different cardiac pathological situations like hypertrophic signaling, contributing to heart failure, or arrhythmia. An HPLC-UV method with a simple and fast sample treatment allowed the quantification of (R)-CE3F4. Sample treatment consisted of simple protein precipitation with 50 µL of ethanol and 150 µL of acetonitrile for a 50 µL biological sample. Two wavelengths were used according to the origin of plasma (220 or 250 nm for human samples and 250 nm for murine samples). Accuracy profile was evaluated for both wavelengths, and the method was in agreement with the criteria given by the EMA in the guideline for bioanalytical method validation for human and mouse plasma samples. The run time was 12 min allowing the detection of the (R)-CE3F4 and a metabolite. This study further permitted understanding the behavior of CE3F4 in plasma by highlighting an important difference between humans and rodents on plasma metabolism and may impact future in vivo studies related to this molecule and translation of results between animal models and humans. Using paraoxon as a metabolism inhibitor was crucial for the stabilization of (R)-CE3F4 in murine samples. HPLC-UV and HPLC-MS/MS studies were conducted to confirm metabolite structure and consequently, the main metabolic pathway in murine plasma.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Quinolinas/sangre , Quinolinas/química , Animales , Recolección de Muestras de Sangre , Humanos , Límite de Detección , Modelos Lineales , Ratones , Paraoxon/química , Reproducibilidad de los Resultados
14.
Int J Pharm ; 609: 121076, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34481886

RESUMEN

A simple approach to achieve a lipoprotein (LP)-mediated drug delivery is to trigger the spontaneous drug insertion into endogenous lipoproteins in the bloodstream, by means of its chemical modification. Nanoparticles (NPs) made of the squalene-gemcitabine (SQGem) conjugate were found to have a high affinity for plasma lipoproteins while free gemcitabine did not, suggesting a key role of the lipid moiety in this event. Whether the drug conjugation to cholesterol, one of the major lipoprotein-transported lipids, could also promote an analogous interaction was a matter of question. NPs made of the cholesterol-gemcitabine conjugate (CholGem) have been herein thoroughly investigated for their blood distribution profile both in vitro and in vivo. Unexpectedly, contrarily to SQGem, no trace of the CholGem prodrug could be found in the lipoprotein fractions, nor was it interacting with albumin. The investigation of isolated NPs and NPs/LPs physical mixtures provided a further insight into the lack of interaction of CholGem NPs with LPs. Although essential for allowing the self-assembly of the prodrug into nanoparticles, the lipid moiety may not be sufficient to elicit interaction of the conjugated drug with plasma lipoproteins but the whole NP physicochemical features must be carefully considered.


Asunto(s)
Desoxicitidina , Sistemas de Liberación de Medicamentos , Nanopartículas , Profármacos , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Humanos , Lípidos , Masculino , Ratas Sprague-Dawley , Gemcitabina
15.
Int J Pharm ; 604: 120757, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34058306

RESUMEN

Patients with residual hearing can benefit from cochlear implantation. However, insertion can damage cochlear structures and generate oxidative stress harmful to auditory cells. The antioxidant N-acetyl-L-cysteine (NAC) is a precursor of glutathione (GSH), a powerful endogenous antioxidant. NAC local delivery to the inner ear appeared promising to prevent damage after cochlear implantation in animals. NAC-loaded liposomal gel was specifically designed for transtympanic injection, performed both 3 days before and on the day of surgery. Hearing thresholds were recorded over 30 days in implanted guinea pigs with and without NAC. NAC, GSH, and their degradation products, N,N'-diacetyl-L-cystine (DiNAC) and oxidized glutathione (GSSG) were simultaneously quantified in the perilymph over 15 days in non-implanted guinea pigs. For the first time, endogenous concentrations of GSH and GSSG were determined in the perilymph. Although NAC-loaded liposomal gel sustained NAC release in the perilymph over 15 days, it induced hearing loss in both implanted and non-implanted groups with no perilymphatic GSH increase. Under physiological conditions, NAC appeared poorly stable within liposomes. As DiNAC was quantified at concentrations which were twice as high as NAC in the perilymph, it was hypothesized that DiNAC could be responsible for the adverse effects on hearing.


Asunto(s)
Implantación Coclear , Acetilcisteína , Animales , Cóclea , Cobayas , Humanos , Liposomas , Perilinfa
16.
Sci Adv ; 6(23): eaaz5466, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548259

RESUMEN

Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Endotoxemia/tratamiento farmacológico , Nanopartículas/química , Escualeno/química , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Adenosina/administración & dosificación , Adenosina/química , Animales , Antioxidantes/administración & dosificación , Antioxidantes/química , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Endotoxemia/inducido químicamente , Femenino , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/química , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2 , Escualeno/administración & dosificación , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Resultado del Tratamiento , alfa-Tocoferol/administración & dosificación , alfa-Tocoferol/química
17.
Int J Pharm ; 581: 119282, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32259640

RESUMEN

Native low-density lipoproteins (LDL) naturally accumulate at atherosclerotic lesions and are thought to be among the main drivers of atherosclerosis progression. Numerous nanoparticular systems making use of recombinant lipoproteins have been developed for targeting atherosclerotic plaque. These innovative formulations often require complicated purification and synthesis procedures which limit their eventual translation to the clinics. Recently, squalenoylation has appeared as a simple and efficient technique for targeting agents to endogenous lipoproteins through a bioconjugation approach. In this study, we have developed a fluorescent squalene bioconjugate to evaluate the biodistribution of squalene-based nanoparticles in an ApoE-/- model of atherosclerosis. By accumulating in LDL endogenous nanoparticles, the squalene bioconjugation could serve as an efficient targeting platform for atherosclerosis. Indeed, in this proof of concept, we show that our squalene-rhodamine (SQRho) nanoparticles, could accumulate in the aortas of atherosclerotic animals. Histological evaluation confirmed the presence of atherosclerotic lesions and the co-localization of SQRho bioconjugates at the lesion sites.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Escualeno/administración & dosificación , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nanopartículas/metabolismo , Células RAW 264.7 , Rodaminas/administración & dosificación , Rodaminas/metabolismo , Escualeno/metabolismo
18.
Sci Adv ; 5(2): eaau5148, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30788432

RESUMEN

The clinical use of endogenous neuropeptides has historically been limited due to pharmacokinetic issues, including plasma stability and blood-brain barrier permeability. In this study, we show that the rapidly metabolized Leu-enkephalin (LENK) neuropeptide may become pharmacologically efficient owing to a simple conjugation with the lipid squalene (SQ). The corresponding LENK-SQ bioconjugates were synthesized using different chemical linkers in order to modulate the LENK release after their formulation into nanoparticles. This new SQ-based nanoformulation prevented rapid plasma degradation of LENK and conferred on the released neuropeptide a notable antihyperalgesic effect that lasted longer than after treatment with morphine in a rat model of inflammation (Hargreaves test). The biodistribution study as well as the use of brain-permeant and -impermeant opioid receptor antagonists indicated that LENK-SQ NPs act through peripherally located opioid receptors. This study represents a novel nanomedicine approach, allowing the specific delivery of LENK neuropeptide into inflamed tissues for pain control.


Asunto(s)
Analgésicos Opioides/farmacocinética , Barrera Hematoencefálica/metabolismo , Morfina/farmacocinética , Nanomedicina Teranóstica , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/química , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encefalina Leucina/química , Encefalina Leucina/farmacocinética , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Estructura Molecular , Morfina/administración & dosificación , Morfina/química , Nanopartículas/química , Nanopartículas/ultraestructura , Ratas , Escualeno/química , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...