Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 114: 18-34, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368447

RESUMEN

The ADAMTS superfamily is composed of secreted metalloproteases and structurally related non-catalytic ADAMTS-like proteins. A subset of this superfamily, including ADAMTS6, ADAMTS10 and ADAMTSL2, are involved in elastic fiber assembly and bind to fibrillin and other matrix molecules that regulate the extracellular bioavailability of the potent growth factor TGFß. Fibrillinopathies, that can also result from mutation of these ADAMTS/L proteins, have been linked to disrupted TGFß homeostasis. ADAMTS6 and ADAMTS10 are homologous metalloproteases with poorly characterized substrates where ADAMTS10 is thought to process fibrillin-2 and ADAMTS6 latent TGFß-binding protein (LTBP)-1. In order to understand the contribution of ADAMTS6, and these other members of the ADAMTS/L family, to TGFß homeostasis, we have analyzed the effects of ADAMTS6, ADAMTS10 and ADAMTSL2 expression on TGFß activation. We found that their expression increases TGFß activation in a dose dependent manner, following stimulation with mature TGFß1. For ADAMTS6, the catalytically active protease is required for effective TGFß activation, where ADAMTS6 cleaves LTBP3 as well as LTBP1, and binds to the large latent TGFß complexes of LTBP1 and LTBP3. Furthermore, ADAMTS6 expression increases the mechanotension of cells which results in inactivation of the Hippo Pathway, resulting in an increased translocation of YAP/TAZ complex to the nucleus. Together these findings suggest that when the balance of TGFß is perturbed ADAMTS6 can influence TGFß activation via two mechanisms. It directly cleaves the latent TGFß complexes and also acts indirectly, along with ADAMTS10 and ADAMTSL2, by altering the mechanotension of cells. Together this increases activation of TGFß from large latent complexes which may contribute to disease pathogenesis.


Asunto(s)
Proteínas de Microfilamentos , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Microfilamentos/metabolismo , Fibrilinas , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas ADAMTS/genética , Fibrilina-1
2.
Elife ; 112022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35503090

RESUMEN

The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.


Asunto(s)
Proteínas ADAMTS , Microfibrillas , Proteínas ADAMTS/química , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animales , Fibrilina-1/genética , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Ratones , Microfibrillas/metabolismo , Proteolisis
3.
FASEB J ; 36(5): e22314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35416346

RESUMEN

Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation. Activation of SIRT1 early in 3D-pellet culture led to significant increases in the expression of ECM genes for type-II collagen (COL2A1) and aggrecan (ACAN), and chondrogenic transcription factors SOX5 and ARID5B, with SOX5 ChIP analysis demonstrating enrichment on the chondrocyte specific -10 (A1) enhancer of ACAN. Unexpectedly, when SIRT1 was activated, while ACAN was enhanced, glycosaminoglycans (GAGs) were reduced, paralleled by down regulation of gene expression for N-acetylgalactosaminyltransferase type 1 (GALNT1) responsible for GAG chain initiation/elongation. A positive correlation between ARID5B and COL2A1 was observed, and co-IP assays indicated association of ARID5B with SIRT1, further suggesting that COL2A1 expression is promoted by an ARID5B-SIRT1 interaction. In conclusion, SIRT1 activation positively impacts on the expression of the main ECM proteins, while altering ECM composition and suppressing GAG content during human cartilage development. These results suggest that SIRT1 activity has a differential effect on GAGs and proteins in developing hESC-chondrocytes and could only be beneficial to cartilage development and matrix protein synthesis if balanced by addition of positive GAG mediators.


Asunto(s)
Cartílago Articular , Células Madre Embrionarias Humanas , Agrecanos/genética , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis , Glicosaminoglicanos/metabolismo , Humanos , Sirtuina 1/genética , Sirtuina 1/metabolismo
4.
Matrix Biol ; 107: 24-39, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122964

RESUMEN

TGFß superfamily members are potent growth factors in the extracellular matrix with essential roles in all aspects of cellular behaviour. Latent TGFß binding proteins (LTBPs) are co-expressed with TGFß, essential for correct folding and secretion of the growth factor, to form large latent complexes. These large latent complexes bind extracellular proteins such as fibrillin for sequestration of TGFß in the matrix, essential for normal tissue function, and dysregulated TGFß signalling is a hallmark of many fibrillinopathies. Transglutaminase-2 (TG2) cross-linking of LTBPs is known to play a role in TGFß activation but the underlying molecular mechanisms are not resolved. Here we show that fibrillin is a matrix substrate for TG2 and that TG2 cross-linked complexes can be formed between fibrillin and LTBP-1 and -3, and their latent TGFß complexes. The structure of the fibrillin-LTBP1 complex shows that the two elongated proteins interact in a perpendicular arrangement which would allow them to form distal interactions between the matrix and the cell surface. Formation of the cross-link with fibrillin does not change the interaction between latent TGFß and integrin αVß6 but does increase TGFß activation in cell-based assays. The activating effect may be due to direction of the latent complexes to the cell surface by fibrillin, as competition with heparan sulphate can ameliorate the activating effect. Together, these data support that TGFß activation can be enhanced by covalent tethering of LTBPs to the matrix via fibrillin.


Asunto(s)
Proteínas de Microfilamentos , Transglutaminasas , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
5.
Front Genet ; 12: 706662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539739

RESUMEN

Latent TGFß binding protein-4 (LTBP4) is a multi-domain glycoprotein, essential for regulating the extracellular bioavailability of TGFß and assembly of elastic fibre proteins, fibrillin-1 and tropoelastin. LTBP4 mutations are linked to autosomal recessive cutis laxa type 1C (ARCL1C), a rare congenital disease characterised by high mortality and severely disrupted connective tissues. Despite the importance of LTBP4, the structure and molecular consequences of disease mutations are unknown. Therefore, we analysed the structural and functional consequences of three ARCL1C causing point mutations which effect highly conserved cysteine residues. Our structural and biophysical data show that the LTBP4 N- and C-terminal regions are monomeric in solution and adopt extended conformations with the mutations resulting in subtle changes to their conformation. Similar to LTBP1, the N-terminal region is relatively inflexible, whereas the C-terminal region is flexible. Interaction studies show that one C-terminal mutation slightly decreases binding to fibrillin-1. We also found that the LTBP4 C-terminal region directly interacts with tropoelastin which is perturbed by both C-terminal ARCL1C mutations, whereas an N-terminal mutation increased binding to fibulin-4 but did not affect the interaction with heparan sulphate. Our results suggest that LTBP4 mutations contribute to ARCL1C by disrupting the structure and interactions of LTBP4 which are essential for elastogenesis in a range of mammalian connective tissues.

6.
Cells ; 10(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805168

RESUMEN

The growth factor TGFß and the mechanosensitive calcium-permeable cation channel TRPV4 are both important for the development and maintenance of many tissues. Although TRPV4 and TGFß both affect core cellular functions, how their signals are integrated is unknown. Here we show that pharmacological activation of TRPV4 significantly increased the canonical response to TGFß stimulation in chondrocytes. Critically, this increase was only observed when TRPV4 was activated after, but not before TGFß stimulation. The increase was prevented by pharmacological TRPV4 inhibition or knockdown and is calcium/CamKII dependent. RNA-seq analysis after TRPV4 activation showed enrichment for the TGFß signalling pathway and identified JUN and SP1 as key transcription factors involved in this response. TRPV4 modulation of TGFß signalling represents an important pathway linking mechanical signalling to tissue development and homeostasis.


Asunto(s)
Condrocitos/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Bovinos , Condrocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Ratones , Proteínas Proto-Oncogénicas c-jun/metabolismo , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción Sp1/metabolismo , Sulfonamidas/farmacología , Factores de Tiempo
7.
Front Bioeng Biotechnol ; 9: 643110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718344

RESUMEN

Elastic fibers are an important component of the extracellular matrix, providing stretch, resilience, and cell interactivity to a broad range of elastic tissues. Elastin makes up the majority of elastic fibers and is formed by the hierarchical assembly of its monomer, tropoelastin. Our understanding of key aspects of the assembly process have been unclear due to the intrinsic properties of elastin and tropoelastin that render them difficult to study. This review focuses on recent developments that have shaped our current knowledge of elastin assembly through understanding the relationship between tropoelastin's structure and function.

8.
ACS Synth Biol ; 9(11): 3067-3078, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33084303

RESUMEN

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor ß (TGFß) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Transducción de Señal/genética , Línea Celular , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Optogenética/métodos , Fosforilación/genética , Transactivadores/genética , Factor de Crecimiento Transformador beta/genética
9.
Methods Mol Biol ; 2043: 137-155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31463909

RESUMEN

Lentiviral systems have proven advantageous in the delivery and long-term integration of gene sequences into the genome of several cell types in vitro, in vivo, as well as in clinical trials. Here we detail the protocols involved in the molecular cloning of ADAMTSL2 and ADAMTSL4 into the human immunodeficiency virus (HIV)-derived pCDH lentiviral system. We also describe the lentiviral transduction of ADAMTSL2 and ADAMTSL4 into mammalian HEK293-EBNA cells to create stable cell lines, as well as their recombinant expression.


Asunto(s)
Proteínas ADAMTS/genética , Clonación Molecular/métodos , Transducción Genética/métodos , Proteínas ADAMTS/metabolismo , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Proteínas Recombinantes/metabolismo
10.
Matrix Biol ; 84: 17-30, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31226403

RESUMEN

Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)ß family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.


Asunto(s)
Elastina/metabolismo , Fibrilinas/metabolismo , Microfibrillas/metabolismo , Animales , Elasticidad , Matriz Extracelular/metabolismo , Fibrilinas/química , Humanos , Microfibrillas/química , Transducción de Señal
11.
Nanomaterials (Basel) ; 9(4)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987078

RESUMEN

This communication reports the first comparative study addressing the effects of both structural architecture and mechanical loading on human mesenchymal stem cells (hMSC) positioned at the interface of a 3D in vitro model composed of a nanofibre/hydrogel laminate composite. hMSC phenotype was affected by both stimuli over a seven-day period. Cells were orientated parallel to the underlying fibre direction irrespective of environment (electrospun 2D fibre sheet or laminate 2D sheet with collagen gel layer). Application of cyclical tensile force (5% strain, 1 Hz, 1 h per day) encouraged hMSCs to remain at the fibre/gel interface, whereas cells cultured in static conditions migrated from the interface to the upper hydrogel layer. Depending on the stimulus applied, hMSCs presented an up-regulation in gene expression, indicative of several cell lineages, with those cultured at the interface and physically stimulated expressing markers indicative of angiogenesis, osteogenesis, and tenogenesis. This study highlights the importance of developing biomaterial scaffolds with environmental cues to specifically drive cells towards the tissue intended for bioengineering.

12.
Semin Cell Dev Biol ; 89: 109-117, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30016650

RESUMEN

Fibrillin microfibrils are extensible polymers that endow connective tissues with long-range elasticity and have widespread distributions in both elastic and non-elastic tissues. They act as a template for elastin deposition during elastic fibre formation and are essential for maintaining the integrity of tissues such as blood vessels, lung, skin and ocular ligaments. A reduction in fibrillin is seen in tissues in vascular ageing, chronic obstructive pulmonary disease, skin ageing and UV induced skin damage, and age-related vision deterioration. Most mutations in fibrillin cause Marfan syndrome, a genetic disease characterised by overgrowth of the long bones and other skeletal abnormalities with cardiovascular and eye defects. However, mutations in fibrillin and fibrillin-binding proteins can also cause short-stature pathologies. All of these diseases have been linked to dysregulated growth factor signalling which forms a major functional role for fibrillin.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Fibrilinas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Microfilamentos/genética , Animales , Tejido Elástico/metabolismo , Elasticidad , Elastina/genética , Elastina/metabolismo , Humanos , Microfibrillas/genética , Transducción de Señal/genética , Piel/crecimiento & desarrollo
13.
Matrix Biol ; 77: 73-86, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30125619

RESUMEN

Bone morphogenetic proteins (BMPs) are essential signalling molecules involved in developmental and pathological processes and are regulated in the matrix by secreted glycoproteins. One such regulator is BMP-binding endothelial cell precursor-derived regulator (BMPER) which can both inhibit and enhance BMP signalling in a context and concentration-dependent manner. Twisted gastrulation (Tsg) can also promote or ablate BMP activity but it is unclear whether Tsg and BMPER directly interact and thereby exert a synergistic function on BMP signalling. Here, we show that human BMPER binds to Tsg through the N-terminal BMP-binding region which alone more potently inhibits BMP-4 signalling than full-length BMPER. Additionally, BMPER and Tsg cooperatively inhibit BMP-4 signalling suggesting a synergistic function to dampen BMP activity. Furthermore, full-length BMPER is targeted to the plasma membrane via binding of its C-terminal region to cell surface heparan sulphate proteoglycans but the active cleavage fragment is diffusible. Small-angle X-ray scattering and electron microscopy show that BMPER has an elongated conformation allowing the N-terminal BMP-binding and C-terminal cell-interactive regions to be spatially separated. To gain insight into the regulation of BMPER bioavailability by internal cleavage, a disease-causing BMPER point mutation, P370L, previously identified in the acid-catalysed cleavage site, was introduced. The mutated protein was secreted but the mutation prevented intracellular cleavage resulting in a lack of bioactive cleavage fragment. Furthermore, mutant BMPER was extracellularly cleaved at a downstream site presumably becoming available due to the mutation. This susceptibility to extracellular proteases and loss of bioactive N-terminal cleavage fragment may result in loss of BMPER function in disease.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas Portadoras/metabolismo , Proteínas/metabolismo , Animales , Sitios de Unión , Proteína Morfogenética Ósea 4/química , Proteína Morfogenética Ósea 4/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular Transformada , Clonación Molecular , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Ratones , Modelos Moleculares , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/genética , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
14.
Bio Protoc ; 8(16)2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30294619

RESUMEN

The 3D culture of human mesenchymal stem cells (hMSCs) represents a more physiological environment than classical 2D culture and has been used to enhance the MSC secretome or extend cell survival after transplantation. Here we describe a simple and affordable method to generate 3D spheroids of hMSCs by seeding them at high density in a low-binding 96-well plate. Spheroids of hMSCs cultured in low-binding 96-well plates can be used to study the basic biology of the cells and to generate conditioned media or spheroids to be used in transplantation therapeutic approaches. These MSCs or their secretome can be used as a regenerative therapy and for tissue repair across multiple disease areas, including neurodegeneration. In comparison to other methods (hanging drop, use of gels or biomaterials, magnetic levitation, etc.), the method described here is simple and affordable with no need to use specialized equipment, expensive materials or complex reagents.

15.
Hum Mol Genet ; 27(21): 3675-3687, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060141

RESUMEN

Fibrillin microfibrils are extracellular matrix assemblies that form the template for elastic fibres, endow blood vessels, skin and other elastic tissues with extensible properties. They also regulate the bioavailability of potent growth factors of the TGF-ß superfamily. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)10 is an essential factor in fibrillin microfibril function. Mutations in fibrillin-1 or ADAMTS10 cause Weill-Marchesani syndrome (WMS) characterized by short stature, eye defects, hypermuscularity and thickened skin. Despite its importance, there is poor understanding of the role of ADAMTS10 and its function in fibrillin microfibril assembly. We have generated an ADAMTS10 WMS mouse model using Clustered Regularly Spaced Interspaced Short Palindromic Repeats and CRISPR associated protein 9 (CRISPR-Cas9) to introduce a truncation mutation seen in WMS patients. Homozygous WMS mice are smaller and have shorter long bones with perturbation to the zones of the developing growth plate and changes in cell proliferation. Furthermore, there are abnormalities in the ciliary apparatus of the eye with decreased ciliary processes and abundant fibrillin-2 microfibrils suggesting perturbation of a developmental expression switch. WMS mice have increased skeletal muscle mass and more myofibres, which is likely a consequence of an altered skeletal myogenesis. These results correlated with expression data showing down regulation of Growth differentiation factor (GDF8) and Bone Morphogenetic Protein (BMP) growth factor genes. In addition, the mitochondria in skeletal muscle are larger with irregular shape coupled with increased phospho-p38 mitogen-activated protein kinase (MAPK) suggesting muscle remodelling. Our data indicate that decreased SMAD1/5/8 and increased p38/MAPK signalling are associated with ADAMTS10-induced WMS. This model will allow further studies of the disease mechanism to facilitate the development of therapeutic interventions.


Asunto(s)
Proteínas ADAMTS/genética , Modelos Animales de Enfermedad , Microfibrillas/metabolismo , Mutación , Transducción de Señal , Síndrome de Weill-Marchesani/metabolismo , Proteínas ADAMTS/metabolismo , Animales , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Proteínas Smad Reguladas por Receptores/metabolismo , Síndrome de Weill-Marchesani/genética
16.
Methods Mol Biol ; 1722: 249-260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29264810

RESUMEN

We present a method to capture mesenchymal stromal cells (MSCs) by adhesion to extracellular matrix (ECM) molecules under flow conditions. The technique simulates a physiological system and exploits the natural biological interactions of cells, through integrin receptors, with their ECM. The system offers an insight into how MSCs could be targeted/localized to the site of interest (graft) following intravenous injection.


Asunto(s)
Matriz Extracelular/fisiología , Citometría de Flujo/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Células Inmovilizadas/metabolismo , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Procesamiento de Imagen Asistido por Computador , Integrinas/metabolismo , Laminina/metabolismo , Células Madre Mesenquimatosas/clasificación , Microscopía por Video , ARN , Análisis de la Célula Individual
17.
Tissue Eng Part A ; 24(11-12): 968-978, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29279011

RESUMEN

We previously developed a 14-day culture protocol under potentially GMP, chemically defined conditions, to generate chondroprogenitors from human embryonic stem cells (hESCs). In vivo work has confirmed the cartilage repair capacity of these cells in a nude rat osteochondral defect model. Aiming to enhance hESC-chondrogenesis, we screened a range of extracellular matrix (ECM) molecules for their ability to support differentiation of hESCs toward chondrocytes. We identified two novel ECM protein fragments that supported hESC-chondrogenesis: Fibronectin III (fibronectin 7-14 protein fragments, including the RGD domain, syndecan-binding domain, and heparin-binding domain) and fibrillin-1 (FBN1) fragment PF8 (encoded by exons 30-38, residues 1238-1605, which contains the RGD motif but not heparin-binding site). These two protein fragments support hESC-chondrogenesis compared with the substrates routinely used previously (a mixture of fibronectin and gelatin) in our directed chondrogenic protocol. We have identified recombinant fibronectin fragment (FN III) and FBNI fragment (PF8) as alternative coating substrates to promote expression of genes known to regulate chondrocytes and code for chondrocyte ECM components. These recombinant protein fragments are likely to have better batch to batch stability than full-length molecules, especially where extracted from tissue/serum.


Asunto(s)
Condrogénesis/efectos de los fármacos , Proteínas de la Matriz Extracelular/química , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Fibronectinas/metabolismo , Humanos
18.
Sci Rep ; 6: 35956, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779234

RESUMEN

ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.


Asunto(s)
Proteínas ADAMTS/metabolismo , Células Epiteliales/fisiología , Adhesiones Focales , Uniones Intercelulares , Proteínas ADAMTS/genética , Análisis Mutacional de ADN , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos
19.
Methods ; 96: 85-96, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608109

RESUMEN

Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery.


Asunto(s)
Fibronectinas/química , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/ultraestructura , Imagen Molecular/métodos , Fenotipo , Secuencia de Aminoácidos , Adhesión Celular , Diferenciación Celular , Línea Celular , Células Nutrientes/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Datos de Secuencia Molecular , Péptidos/química
20.
Stem Cell Reports ; 4(3): 473-88, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25684225

RESUMEN

Mesenchymal progenitor cells have great therapeutic potential, yet incomplete characterization of their cell-surface interface limits their clinical exploitation. We have employed subcellular fractionation with quantitative discovery proteomics to define the cell-surface interface proteome of human bone marrow mesenchymal stromal/stem cells (MSCs) and human umbilical cord perivascular cells (HUCPVCs). We compared cell-surface-enriched fractions from MSCs and HUCPVCs (three donors each) with adult mesenchymal fibroblasts using eight-channel isobaric-tagging mass spectrometry, yielding relative quantification on >6,000 proteins with high confidence. This approach identified 186 upregulated mesenchymal progenitor biomarkers. Validation of 10 of these markers, including ROR2, EPHA2, and PLXNA2, confirmed upregulated expression in mesenchymal progenitor populations and distinct roles in progenitor cell proliferation, migration, and differentiation. Our approach has delivered a cell-surface proteome repository that now enables improved selection and characterization of human mesenchymal progenitor populations.


Asunto(s)
Antígenos de Superficie/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Multipotentes/metabolismo , Proteoma , Proteómica , Adulto , Biomarcadores , Linaje de la Célula/genética , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Fenotipo , Proteómica/métodos , Interferencia de ARN , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados , Nicho de Células Madre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...