Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(5): 1248-1266, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366939

RESUMEN

Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two-three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.


Asunto(s)
Ecosistema , Ríos , Estuarios , Biomasa , Fitoplancton/metabolismo , Lagos , Eutrofización , Fósforo/metabolismo
2.
Data Brief ; 42: 108248, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35599831

RESUMEN

We provide a unique fish individual body size dataset collected from our own sampling and public sources in north-eastern Spain. The dataset includes individual body size measures (fork length and mass) of 12,288 individuals of 24 fish species within 10 families collected at 118 locations in large rivers and small streams. Fish were caught by one-pass electrofishing following European standard protocols. The fish dataset has information on the local instream conditions including climatic variables (i.e., temperature and precipitation), topography (i.e., altitude), nutrient concentration (i.e., total phosphorus and nitrates), and the IMPRESS values (a measure of cumulative human impacts in lotic ecosystems). The potential uses of this new fish dataset are manifold, including developing size-based indices to further estimate the ecological status of freshwater ecosystems, allometric models, and analysis of variation in body size structure along environmental gradients.

3.
Sci Total Environ ; 655: 1376-1386, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30577129

RESUMEN

River deltas are ecologically and economically valuable coastal ecosystems but low elevations make them extremely sensitive to relative sea level rise (RSLR), i.e. the combined effects of sea level rise and subsidence. Most deltas are subjected to extensive human exploitation, which has altered the habitat composition, connectivity and geomorphology of deltaic landscapes. In the Ebro Delta, extensive wetland reclamation for rice cultivation over the last 150 years has resulted in the loss of 65% of the natural habitats. Here, we compare the dynamics of habitat shifts under two departure conditions (a simulated pristine delta vs. the human-altered delta) using the Sea Level Affecting Marshes Model (SLAMM) under the 4.5 and 8.5 RCP (Representative Concentration Pathways) scenarios for evaluating their resilience to RSLR (i.e. resistance to inundation). Results showed lower inundation rates in the human delta (~10 to 22% by the end of the century, depending on RCP conditions), mostly due to ~4.5 times lower initial extension of coastal lagoons compared to the pristine delta. Yet, inundation rates from ~15 to 30% of the total surface represent the worst possible human scenario, assuming no flooding protection measures. Besides, accretion rates within rice fields are disregarded since this option is not available in SLAMM for developed dry land. In the human delta, rice fields were largely shifted to other wetland habitats and experienced the highest reductions, mostly because of their larger surface. In contrast, in the pristine delta most of the habitats showed significant decreases by 2100 (~2 to 32% of the surface). Coastal infrastructures (dykes or flood protection dunes) and reintroduction of riverine sediments through irrigation channels are proposed to minimize impacts of RSLR. In the worst RCP scenarios, promoting preservation of natural habitats by transforming unproductive rice fields into wetlands could be the most sustainable option.

4.
Sci Total Environ ; 625: 1467-1475, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29996443

RESUMEN

The Ebro Delta (NE Spain), formed by two bays, northern and southern hemidelta, is an area mainly devoted to rice farming. As a result shellfish species inhabiting or cultured in nearby bays may become increasingly threatened by exposure to pollutants associated to agriculture. The latest product applied in the rice fields is a plant based molluscicide called saponin, used to control populations of the giant apple snail (GAS). Saponins are known to also affect other organisms, hence research of its toxicity towards non target species is needed. In this study, mussels (Mytilus galloprovincialis) were exposed to three concentrations of suspended solid pellets containing saponin extracts from the plant species Camellia sinensis. Effects across a large set of biochemical markers were investigated in the digestive gland and gill tissue of exposed mussels to saponin for 1 and 7days. In addition, crude saponin was extracted from solid pellets to confirm its correct concentration. Results obtained from this study, showed that the concentration of crude saponin in dry pellets was of 5.5%. Lethal levels of saponin were 3.2 fold higher than the maximal predicted field concentration, and activated respiratory metabolism and expression of transmembrane protein transporters. Mussels, exposed to sub lethal concentrations of saponin showed increase of antioxidant defenses.


Asunto(s)
Mytilus/fisiología , Saponinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Camellia sinensis/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Estrés Oxidativo/fisiología , España
5.
Ecotoxicol Environ Saf ; 155: 9-16, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29494836

RESUMEN

The lower course of the Ebro River is polluted with high concentrations of organochlorine compounds dumped by a chloro-alkali plant during the last century. A remediation plan, including building of a protective wall, removal and disposal of polluted sediments started in 2012. With the aim of assessing the effects of dredging of contaminated sediments and potential alterations of water quality, areas located upstream (RR) and downstream (BE, A) the chemical plant (FL) were monitored prior (October 2012) and during dredging (June 2013) using roach (Rutilus rutilus) as sentinel organisms. Concentrations of organochlorine compounds (OCs) in fish muscle and biliary levels of polycyclic aromatic hydrocarbons (PAHs), galaxolide (HHCB) and alkyphenols (APEs) were determined together with selected enzymatic activities (7-ethoxyresorufin-O-deethylase (EROD), 7-benzyloxy-4-trifluoromethyl-coumarin O-debenzyloxylase (BFCOD) and UDP-glucuronyltransferase (UGT)) in the liver. The obtained results proved the effectiveness of the wall retaining suspended particles and avoiding further contamination of downstream sites as fish sampled at downstream sites showed up to 9-fold higher concentrations of OCs in muscle during wall construction than during dredging. EROD and UGT activities were induced in fish from downstream sites; however, no clear response to the observed pollution gradient was detected.


Asunto(s)
Cyprinidae/metabolismo , Hidrocarburos Clorados/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Biomarcadores/análisis , Monitoreo del Ambiente , Hígado/enzimología , Músculos/química , Hidrocarburos Policíclicos Aromáticos/análisis
6.
PeerJ ; 5: e3009, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28265500

RESUMEN

The hydrological connectivity between the salt marsh and the sea was partially restored in a Mediterranean wetland containing isolated ponds resulting from former salt extraction and aquaculture activities. A preliminary assessment provided evidence that ponds farther from the sea hosted very large numbers of the endangered Spanish toothcarp, Aphanius iberus, suggesting that individuals had been trapped and consequently reach unnaturally high densities. In order to achieve both habitat rehabilitation and toothcarp conservation, efforts were made to create a gradient of hydrologically connected areas, including isolated fish reservoirs, semi-isolated, and connected salt marsh-sea areas that could allow migratory movements of fish and provide some protection for A. iberus. The fish community was monitored prior to, and for three years after rehabilitation. Results showed an increase in the number of fish species within semi-isolated areas (Zone A), whereas areas adjacent to the sea (Zone B) increased the number of marine species and decreased that of estuarine species (ES). Yet overall differences in fish assemblages were much higher between zones than among study years. Generalized linear models (GLMs) evidenced that distance to the sea was the most important variable explaining the local diversity of the fish community after restoration, with occasional influence of other factors such as temperature, and depth. The abundance of A. iberus was consistently higher in semi-isolated areas at greater distances from the sea, but a decline occurred in both zones and in isolated reservoir ponds after restoration efforts, which may be attributable to interannual differences in recruitment success and, to a lesser extent, to dispersal into adjacent habitats. A negative effect of restoration works on fish population cannot be excluded, but the final outcome of the intervention likely needs a longer period.

7.
Sci Total Environ ; 571: 1200-10, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27481453

RESUMEN

Climate change and sea level rise (SLR) are global impacts threatening the sustainability of coastal territories and valuable ecosystems such as deltas. The Ebro Delta is representative of the vulnerability of coastal areas to SLR. Rice cultivation is the main economic activity in the region. Rice fields occupy most of the delta (ca. 65%) and are vulnerable to accelerated SLR and consequent increase in soil salinity, the most important physical factor affecting rice production. We developed a model to predict the impacts of SLR on soil salinity and rice production under different scenarios predicted by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change by coupling data from Geographic Information Systems with Generalized Linear Models. Soil salinity data were measured in agricultural parcels and rice production from surveys among farmers. The correlation between observed and soil salinity predicted values was high and significant (Pearson's r=0.72, P<0.0001), thus supporting the predictive ability of the model. Soil salinity was directly related to distances to the river, to the delta inner border, and to the river old mouth, while clay presence, winter river flow and surface elevation were inversely related to it. Surface elevation was the most important variable in explaining soil salinity. Rice production was negatively influenced by soil salinity, thus the models predict a decrease from higher elevation zones close to the river to the shoreline. The model predicts a maximum reduction in normalized rice production index from 61.2% in 2010 to 33.8% by 2100 in the worst considered scenario (SLR=1.8m), with a decrease of profit up to 300 € per hectare. The model can be applied to other deltaic areas worldwide, and help rice farmers and stakeholders to identify the most vulnerable areas to SLR impacts.

8.
Mar Environ Res ; 117: 21-31, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27062106

RESUMEN

The spatial distribution of benthic macroinvertebrate community in relation to environmental factors was studied along the Ebro Estuary (NE Iberian Peninsula), a salt wedge Mediterranean estuary. Both ordination methods and generalized additive models were performed to identify the different benthic assemblages and their relationship to abiotic factors. Our results showed a strong relationship between macrofaunal assemblages and the predominant environmental gradients (e.g. salinity); thus revealing spatial differences in their structure and composition. Two different stretches were identified, namely the upper (UE) and the lower Ebro Estuary (LE). UE showed riverine characteristics and hence was colonized by a freshwater community; whereas LE was influenced by marine intrusion and sustained a complex marine-origin community. However, within each stretch, water and sediment characteristics played an important role in explaining species composition differences among sampling stations. Moreover, outcomes suggested a total species replacement pattern, instead of the nestedness pattern usually associated with well-mixed temperate estuaries. The sharp species turnover together with the estuarine stratification point out that the Ebro Estuary is working, in terms of ecological boundaries, under an ecotone model. Finally, despite obvious differences with well mixed estuaries (i.e. lack of tidal influence, stratification and species turnover), the Ebro Estuary shares important ecological attributes with well-mixed temperate estuaries.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Monitoreo del Ambiente , Estuarios , Estrés Fisiológico , Animales , Biodiversidad , Invertebrados/fisiología , Mar Mediterráneo , Salinidad
9.
Oecologia ; 181(1): 193-205, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26781303

RESUMEN

Metacommunity approaches are becoming popular when analyzing factors driving species distribution at the regional scale. However, until the popularization of the variation partitioning technique it was difficult to assess the main drivers of the observed patterns (spatial or environmental). Here we propose a new framework linking the emergence of different metacommunity structures (e.g., nested, Gleasonian, Clementsian) to spatial and environmental filters. This is a novel approach that provides a more profound analysis of how both drivers could lead to similar metacommunity structures. We tested this framework on 110 sites covering a strong environmental gradient (i.e., microcrustacean assemblages organized along a salinity gradient, from freshwater to brackish water wetlands). First we identified the metacommunity structure that better fitted these microcrustacean assemblages. Then, we used hierarchical variation partitioning to quantify the relative influences of environmental filters and the distance among wetlands on the identified structure. Our results showed that under strong environmental filtering metacommunity structures were non-random. We also noted that even passive dispersers, that are supposed to be poorly spatially filtered, showed spatial signals at a large geographical scale. However, some difficulties arose when inferring biotic interactions at finer-scale spatial signals. Overall, our study shows the potential of elements of metacommunity structure combined with variation partition techniques to detect environmental drivers and broadscale patterns of metacommunity structure, and that some caution is needed when interpreting finer-scale spatial signals.


Asunto(s)
Biota , Crustáceos/fisiología , Humedales , Animales , Crustáceos/clasificación , España
10.
Sci Total Environ ; 440: 132-9, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22939413

RESUMEN

The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton to a macrophyte-dominated system. Macrophytes started to spread at the end of the 1990s and since 2002 artificial floods (flushing flows) of short duration (1-2 days) are released from the Riba-roja dam once or twice a year in order to reduce macrophyte density. The aim of this study was to analyse the spatiotemporal trends of the submerged macrophytes in two stretches of the lower Ebro River using high-resolution hydroacoustic methods, in order to elucidate the effects of artificial floods and natural floods on its distribution and abundance. Results showed that the mean cover in the two studied stretches (Móra and Ginestar) was not reduced after a flushing flow (from 36.59% to 55.85% in Móra, and from 21.18% to 21.05% in Ginestar), but it was greatly reduced after the natural flood (down to 9.79% in Móra and 2.04% in Ginestar); surprisingly the cover increased in Móra after the artificial flood. In order to increase the efficiency of floods in controlling macrophyte spreading, the magnitude and frequency of them should largely increase, as well as the suspended sediment load, approaching as much as possible to the original flood pattern before dam construction. Hydroacoustic methods combined with geostatistics and interpolation in GIS can accurately monitor spatiotemporal trends of submerged macrophytes in large rivers. This is the first article to apply this monitoring system to submerged macrophytes in rivers.


Asunto(s)
Monitoreo del Ambiente/métodos , Inundaciones , Dispersión de las Plantas , Plantas , Organismos Acuáticos/fisiología , Conservación de los Recursos Naturales , Ecosistema , Dinámica Poblacional , Ríos , Estaciones del Año , España , Factores de Tiempo
11.
Sci Total Environ ; 416: 314-22, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22178026

RESUMEN

The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton-dominated to a macrophyte-dominated system. This shift is well known in shallow lakes but apparently it has never been documented in rivers. Two initial hypotheses to explain the collapse of the phytoplankton were considered: a) the diminution of nutrients (bottom-up); b) the filtering effect due to the colonization of the zebra mussel (top-down). Data on water quality, hydrology and biological communities (phytoplankton, macrophytes and zebra mussel) was obtained both from existing data sets and new surveys. Results clearly indicate that the decrease in phosphorus is the main cause of a dramatic decrease in chlorophyll and large increase in water transparency, triggering the subsequent colonization of macrophytes in the river bed. A Generalized Linear Model analysis showed that the decrease in dissolved phosphorus had a relative importance 14 times higher than the increase in zebra mussel density to explain the variation of total chlorophyll. We suggest that the described changes in the lower Ebro River can be considered a novel ecosystem shift. This shift is triggering remarkable changes in the biological communities beyond the decrease of phytoplankton and the proliferation of macrophytes, such as massive colonization of Simulidae (black fly) and other changes in the benthic invertebrate communities that are currently investigated.


Asunto(s)
Dreissena , Fitoplancton , Ríos , Animales , Clorofila/análisis , Ecosistema , Ambiente , Agua Dulce/análisis , Densidad de Población , España , Contaminantes Químicos del Agua/análisis , Calidad del Agua
12.
Sci Total Environ ; 409(5): 898-904, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21176943

RESUMEN

In the Flix Reservoir (Ebro River, Spain), ca. 300,000tons of industrial waste were dumped because of the activity of a factory plant in Flix. Within the recovery program implemented, this exceptional situation provides a unique opportunity to test the value of zebra mussel as sentinel organism. Ten metal concentrations were measured in mussels from different sites to assess spatial redistribution of metals and bioavailability to the food web. Our results showed an important metal uptake by mussels; metal concentrations (except As) measured in impacted sites were up to 10 times higher than in control sites, and Mn and Hg exceeded several times the levels previously reported for polluted waters. Concentrations increased downstream showing the metal mobilization from polluted sediments in Flix Reservoir. The higher metal concentrations measured in zebra mussel individuals clearly indicated their bioavailability to the food web, allowing the toxics transfer to predators and occasionally to humans. Thus, zebra mussel is a valuable sentinel organism to identify highly polluted waters, transport routes and trophic transfer.


Asunto(s)
Dreissena/metabolismo , Monitoreo del Ambiente/métodos , Residuos Industriales/análisis , Metales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Sedimentos Geológicos/química , Residuos Peligrosos/análisis , Residuos Peligrosos/estadística & datos numéricos , Residuos Industriales/estadística & datos numéricos , Modelos Químicos , Análisis de Componente Principal , Ríos/química , España , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA