Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 621(7980): 877-882, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704721

RESUMEN

AMPA glutamate receptors (AMPARs), the primary mediators of excitatory neurotransmission in the brain, are either GluA2 subunit-containing and thus Ca2+-impermeable, or GluA2-lacking and Ca2+-permeable1. Despite their prominent expression throughout interneurons and glia, their role in long-term potentiation and their involvement in a range of neuropathologies2, structural information for GluA2-lacking receptors is currently absent. Here we determine and characterize cryo-electron microscopy structures of the GluA1 homotetramer, fully occupied with TARPγ3 auxiliary subunits (GluA1/γ3). The gating core of both resting and open-state GluA1/γ3 closely resembles GluA2-containing receptors. However, the sequence-diverse N-terminal domains (NTDs) give rise to a highly mobile assembly, enabling domain swapping and subunit re-alignments in the ligand-binding domain tier that are pronounced in desensitized states. These transitions underlie the unique kinetic properties of GluA1. A GluA2 mutant (F231A) increasing NTD dynamics phenocopies this behaviour, and exhibits reduced synaptic responses, reflecting the anchoring function of the AMPAR NTD at the synapse. Together, this work underscores how the subunit-diverse NTDs determine subunit arrangement, gating properties and ultimately synaptic signalling efficiency among AMPAR subtypes.


Asunto(s)
Ácido Glutámico , Transmisión Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Microscopía por Crioelectrón , Sinapsis/fisiología
2.
Nat Commun ; 14(1): 1659, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966141

RESUMEN

AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators.


Asunto(s)
Canales de Calcio , Receptores AMPA , Receptores AMPA/metabolismo , Ligandos , Canales de Calcio/metabolismo , Transmisión Sináptica
3.
Nature ; 594(7863): 454-458, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079129

RESUMEN

AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1-GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Multimerización de Proteína , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Hipocampo , Metabolismo de los Lípidos , Lípidos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Células Piramidales/metabolismo , Receptores AMPA/química , Rotación
4.
Science ; 364(6438)2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30872532

RESUMEN

AMPA-type glutamate receptors (AMPARs) mediate excitatory neurotransmission and are central regulators of synaptic plasticity, a molecular mechanism underlying learning and memory. Although AMPARs act predominantly as heteromers, structural studies have focused on homomeric assemblies. Here, we present a cryo-electron microscopy structure of the heteromeric GluA1/2 receptor associated with two transmembrane AMPAR regulatory protein (TARP) γ8 auxiliary subunits, the principal AMPAR complex at hippocampal synapses. Within the receptor, the core subunits arrange to give the GluA2 subunit dominant control of gating. This structure reveals the geometry of the Q/R site that controls calcium flux, suggests association of TARP-stabilized lipids, and demonstrates that the extracellular loop of γ8 modulates gating by selectively interacting with the GluA2 ligand-binding domain. Collectively, this structure provides a blueprint for deciphering the signal transduction mechanisms of synaptic AMPARs.


Asunto(s)
Canales de Calcio/química , Receptores AMPA/química , Animales , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Células HEK293 , Hipocampo/metabolismo , Humanos , Dominios Proteicos , Multimerización de Proteína , Ratas , Receptores AMPA/ultraestructura , Transducción de Señal , Sinapsis/metabolismo
5.
Hum Mol Genet ; 26(20): 3869-3882, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016847

RESUMEN

The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.


Asunto(s)
Discapacidad Intelectual/genética , Mutación Puntual , Receptores AMPA/genética , Receptores AMPA/metabolismo , Trastornos del Sueño-Vigilia/genética , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Science ; 352(6285): aad3873, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26966189

RESUMEN

AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling.


Asunto(s)
Multimerización de Proteína , Receptores AMPA/química , Encéfalo/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Estructura Terciaria de Proteína , Receptores AMPA/ultraestructura
7.
Nat Genet ; 47(7): 717-726, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25985138

RESUMEN

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Diagnóstico Molecular , Secuencia de Bases , Análisis Mutacional de ADN , Enfermedades Genéticas Congénitas/genética , Genoma Humano , Humanos , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad
8.
Cell Rep ; 9(2): 728-40, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25373908

RESUMEN

AMPA-type glutamate receptors (AMPARs) mediate fast neurotransmission at excitatory synapses. The extent and fidelity of postsynaptic depolarization triggered by AMPAR activation are shaped by AMPAR auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). TARPs profoundly influence gating, an effect thought to be mediated by an interaction with the AMPAR ion channel and ligand binding domain (LBD). Here, we show that the distal N-terminal domain (NTD) contributes to TARP modulation. Alterations in the NTD-LBD linker result in TARP-dependent and TARP-selective changes in AMPAR gating. Using peptide arrays, we identify a TARP interaction region on the NTD and define the path of TARP contacts along the LBD surface. Moreover, we map key binding sites on the TARP itself and show that mutation of these residues mediates gating modulation. Our data reveal a TARP-dependent allosteric role for the AMPAR NTD and suggest that TARP binding triggers a drastic reorganization of the AMPAR complex.


Asunto(s)
Canales de Calcio/metabolismo , Activación del Canal Iónico , Receptores AMPA/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio/química , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores AMPA/metabolismo
9.
J Neurosci ; 34(36): 12104-20, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186755

RESUMEN

Cornichon homologs (CNIHs) are AMPA-type glutamate receptor (AMPAR) auxiliary subunits that modulate AMPAR ion channel function and trafficking. Mechanisms underlying this interaction and functional modulation of the receptor complex are currently unclear. Here, using proteins expressed from mouse and rat cDNA, we show that CNIH-3 forms a stable complex with tetrameric AMPARs and contributes to the transmembrane density in single-particle electron microscopy structures. Peptide array-based screening and in vitro mutagenesis identified two clusters of conserved membrane-proximal residues in CNIHs that contribute to AMPAR binding. Because CNIH-1 binds to AMPARs but modulates gating at a significantly lower magnitude compared with CNIH-3, these conserved residues mediate a direct interaction between AMPARs and CNIHs. In addition, residues in the extracellular loop of CNIH-2/3 absent in CNIH-1/4 are critical for both AMPAR interaction and gating modulation. On the AMPAR extracellular domains, the ligand-binding domain and possibly a stretch of linker, connecting the ligand-binding domain to the fourth membrane-spanning segment, is the principal contact point with the CNIH-3 extracellular loop. In contrast, the membrane-distal N-terminal domain is less involved in AMPAR gating modulation by CNIH-3 and AMPAR binding to CNIH-3. Collectively, our results identify conserved residues in the membrane-proximal region of CNIHs that contribute to AMPAR binding and an additional unique segment in the CNIH-2/3 extracellular loop required for both physical interaction and gating modulation of the AMPAR. Consistent with the dissociable properties of binding and gating modulation, we identified a mutant CNIH-3 that preserves AMPAR binding capability but has attenuated activity of gating modulation.


Asunto(s)
Receptores AMPA/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Masculino , Datos de Secuencia Molecular , Unión Proteica , Ratas , Receptores AMPA/química , Receptores AMPA/genética
10.
Neuron ; 76(3): 503-10, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23141062

RESUMEN

The AMPA-type glutamate receptor (AMPAR) subunit composition shapes synaptic transmission and varies throughout development and in response to different input patterns. Here, we show that chronic activity deprivation gives rise to synaptic AMPAR responses with enhanced fidelity. Extrasynaptic AMPARs exhibited changes in kinetics and pharmacology associated with splicing of the alternative flip/flop exons. AMPAR mRNA indeed exhibited reprogramming of the flip/flop exons for GluA1 and GluA2 subunits in response to activity, selectively in the CA1 subfield. However, the functional changes did not directly correlate with the mRNA expression profiles but result from altered assembly of GluA1/GluA2 subunit splice variants, uncovering an additional regulatory role for flip/flop splicing in excitatory signaling. Our results suggest that activity-dependent AMPAR remodeling underlies changes in short-term synaptic plasticity and provides a mechanism for neuronal homeostasis.


Asunto(s)
Hipocampo/fisiología , Isoformas de Proteínas/fisiología , Receptores AMPA/fisiología , Animales , Animales Recién Nacidos , Exones/genética , Hipocampo/metabolismo , Ligandos , Técnicas de Cultivo de Órganos , Unión Proteica/genética , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína/genética , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA