Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(5): 1486-1496, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38419868

RESUMEN

Luminescent nanoparticles have shown great potential for thermal sensing in bio-applications. Nonetheless, these materials lack water dispersibility that can be overcome by modifying their surface properties with water dispersible molecules such as cysteine. Herein, we employ LiYF4:Er3+/Yb3+ upconverting nanoparticles (UCNPs) capped with oleate or modified with cysteine dispersed in cyclohexane or in water, respectively, as thermal probes. Upconversion emission was used to sense temperature with a relative thermal sensitivity of ∼1.24% K-1 (at 300 K) and a temperature uncertainty of 0.8 K for the oleate capped and of 0.5 K for cysteine modified NPs. To study the effect of the cysteine modification in the heat transfer processes, the thermal conductivity of the nanofluids was determined, yielding 0.123(6) W m-1 K-1 for the oleate capped UCNPs dispersed in cyclohexane and 0.50(7) W m-1 K-1 for the cysteine modified UCNPs dispersed in water. Moreover, through the heating curves, the nanofluids' thermal resistances were estimated, showing that the cysteine modification partially prevents heat transfer.

2.
Nanotechnology ; 33(32)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35390771

RESUMEN

Silver nanoparticles are one of the most extensively used metallic nanomaterials due to their unusual physical and chemical properties as well as their promising applications in a wide range of different fields. In this study, a non-thermal atmospheric pressure helium plasma jet was used to successfully synthesize silver nanoparticles with silver nitrate as a precursor and trisodium citrate as a capping agent. The browning of the solution after only 5 min of plasma irradiation is a result of the surface plasmon resonance (SPR) from the obtained silver nanoparticles. The SPR was confirmed by the presence of an absorption band in the visible range between 400 and 450 nm demonstrated in the UV-vis spectra. The effect of different chemical parameters such as the concentration of silver nitrate and the concentration of citrate on the silver nanoparticles have been studied. These nanoparticles were further characterized using transmission electron microscopy and dynamic light scattering. Therefore, the plasma jet was advantageous to fast produce silver nanoparticles in friendly conditions. In addition, the used experimental setup allows further studies in different solvents conditions and with different capping agents. So, this methodology could be useful for the preparation of silver nanoparticles required for numerous applications such as bioactivity, catalysis, surface enhanced Raman scattering, and photonic.

3.
Nanotechnology ; 33(30)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35413700

RESUMEN

The energy off-dtransitions depends on the crystalline field in which the lanthanide ion is inserted. Depending on the experimental setup, these transitions could occur at high energy, so several studies regarding theoretical data have been conducted. Here, we present the experimental determination of the energy of interconfigurational 4fn â†’ 4fn-15d (f-d)transitions from Pr3+ions to the lanthanum orthophosphate LaPO4matrix; we have also determined the bandgap value for this host. The experiments were carried out at the Synchrotron setup of the Brazilian LNLS laboratory. Specifically, we synthesized LaPO4:Pr3+and LaPO4:Pr3+/Gd3+by the hydrothermal method under different pH conditions or by spray pyrolysis. The particles resulting from hydrothermal synthesis had different morphologies and the influence of pH value was showed: the reaction medium was controlled along the process, which changed the surface potential. On the basis of Raman spectroscopy and x-ray diffraction analyses, we found that the crystalline phase was monoclinic monazite for all the samples. We studied the 4f5dlevel and bandgap transitions at high energy by absorption analysis in the VUV range. The experimental results were 7.5 eV (LaPO4bandgap) and 5 eV (4fn→ 4fn-15dtransition of the Pr3+ion), which were close to the theoretical values reported in the literature for this ion and this matrix.

4.
Sci Rep ; 12(1): 1051, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058511

RESUMEN

Random lasers (RLs) are remarkable experimental platforms to advance the understanding of complex systems phenomena, such as the replica-symmetry-breaking (RSB) spin glass phase, dynamics modes correlations, and turbulence. Here we study these three phenomena jointly in a Nd:YAG based RL synthesized for the first time using a spray pyrolysis method. We propose a couple of modified Pearson correlation coefficients that are simultaneously sensitive to the emergence and fading out of photonic intermittency turbulent-like effects, dynamics evolution of modes correlations, and onset of RSB behavior. Our results show how intertwined these phenomena are in RLs, and suggest that they might share some common underlying mechanisms, possibly approached in future theoretical models under a unified treatment.

5.
Nanotechnology ; 28(23): 235601, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28452327

RESUMEN

Spray pyrolysis (SP) easily affords nano or sub-micro phosphor particles even on an industrial scale. However, control of the coordination environment around the emitting ion is inefficient, and the final solid matrix will dictate the symmetry of the emitter. Moreover, the fast heat treatment typical of SP usually results in heterogeneous symmetry sites. This paper aimed to obtain inorganic matrices incorporated with phosphors by SP while keeping the symmetry of the emitting ion unchanged along the pyrolysis process. Nanoparticles consisting of Eu3+-doped YVO4 phosphors with average diameter of 15 nm were prepared by the co-precipitation method and were subsequently incorporated into the alumina matrix by SP, to yield YVO4:Eu3+/γ-Al2O3 composite particles with mean size of 600 nm. X-ray powder diffraction confirmed that the vanadate particles were incorporated into the alumina matrix, and that the γ-Al2O3 phase emerged. The band due to the [Formula: see text] â†’ Eu3+ transition intensified as a consequence of the incorporation of YVO4:Eu3+ into alumina-the suppression effects caused by the surface properties of the YVO4:Eu3+ phosphor nanoparticles diminished, while the structure of Eu3+ remained unchanged in the matrix.

6.
Nanotechnology ; 26(33): 335604, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26222799

RESUMEN

Ordered mesoporous, highly luminescent SiO2 particles have been synthesized by spray pyrolysis from solutions containing tetraethylorthosilicate (TEOS), Eu(NO3)3.6H2O, and cetyltrimethylammonium bromide (CTAB) as structure-directing agents. The 1,10-phenantroline (Phen) molecules were coordinated in a post-synthesis step by a simple wet impregnation method. In addition, other matrices were also prepared by the encapsulation of europium complex Eu(fod)3 (where fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato) into mesoporous silica, and then the Phen molecules were encapsulated by different impregnation steps, after which the luminescence properties were investigated. The obtained materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Powders with polydisperse spherical grains were obtained, displaying an ordered hexagonal array of mesochannels. Luminescence results revealed that Phen molecules had been successfully coordinated as an additional ligand in the Eu(fod)3 complex into the channels of the mesoporous particles without disrupting the structure.

7.
Langmuir ; 29(19): 5878-88, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23586677

RESUMEN

A new highly luminescent europium complex with the formula [Eu(TTA)3(Bpy-Si)], where TTA stands for the thenoyltrifluoroacetone, (C4H3S)COCH2COCF3, chelating ligand and Bpy-Si, Bpy-CH2NH(CH2)3Si(OEt)3, is an organosilyldipyridine ligand displaying a triethoxysilyl group as a grafting function has been synthesized and fully characterized. This bifunctional complex has been grafted onto the surface of dense silica nanoparticles (NPs) and on mesoporous silica microparticles as well. The covalent bonding of [Eu(TTA)3(Bpy-Si)] inside uniform Stöber silica nanoparticles was also achieved. The general methodology proposed could be applied to any silica matrix, allowed high grafting ratios that overcome chelate release and the tendency to agglomerate. Luminescent silica-based nanoparticles SiO2-[Eu(TTA)3(Bpy-Si)], with a diameter of 28 ± 2 nm, were successfully tested as a luminescent labels for the imaging of Pseudomonas aeruginosa biofilms. They were also functionalized by a specific monoclonal antibody and subsequently employed for the selective imaging of Escherichia coli bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Nanopartículas/química , Compuestos Organometálicos/química , Pseudomonas aeruginosa/crecimiento & desarrollo , Dióxido de Silicio/química , Europio/química , Luminiscencia , Compuestos Organometálicos/síntesis química , Compuestos de Organosilicio/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA