Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Toxins (Basel) ; 15(9)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37756010

RESUMEN

Accidents with snakes are responsible for about 32,000 deaths annually in sub-Saharan Africa, caused mostly by snakes from the genus Bitis, in particular Bitis arietans. B. arietans venom is composed of a complex mixture of toxins, mainly metalloproteases, serine proteases, phospholipases, lectins, and disintegrins. In this work, we compared two approaches to anti-B. arietans antivenom production: immunization with crude snake venom ("traditional approach") and immunization with selected key toxins isolated from the snake venom ("toxin oriented" approach). Fractions from B. arietans venom were isolated by size exclusion chromatography. Crude venom and samples containing serine proteases or metalloproteases were selected for the immunization of BALB/c mice. Anti-B. arietans and anti-serine proteases plasmas showed a similar recognition profile and higher titers and affinity than the anti-metalloproteases plasma. Cross-recognition of other Bitis venoms was observed, but with low intensity. Although the plasma of all experimental groups inhibited the enzymatic activity of B. arietans venom in vitro, in vivo protection was not achieved. Our results have shown limitations in both approaches considered. Based on this, we proposed a model of polyclonal, species-specific, monovalent antivenoms that could be used as a base to produce customizable polyvalent sera for use in sub-Saharan Africa.


Asunto(s)
Antivenenos , Toxinas Biológicas , Animales , Ratones , Antivenenos/farmacología , Venenos de Serpiente , Serina Endopeptidasas , Serina Proteasas , Ratones Endogámicos BALB C
2.
Biochimie ; 204: 140-153, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36210615

RESUMEN

Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Humanos , Ácido N-Acetilneuramínico/metabolismo , Venenos de Serpiente , Serina Proteasas/metabolismo , Venenos de Crotálidos/química , Glicoproteínas/metabolismo , Serina Endopeptidasas/metabolismo , Polisacáridos/metabolismo , Bothrops/metabolismo
3.
Toxins, v. 15, n. 9, 584, set. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5116

RESUMEN

Accidents with snakes are responsible for about 32,000 deaths annually in sub-Saharan Africa, caused mostly by snakes from the genus Bitis, in particular Bitis arietans. B. arietans venom is composed of a complex mixture of toxins, mainly metalloproteases, serine proteases, phospholipases, lectins, and disintegrins. In this work, we compared two approaches to anti-B. arietans antivenom production: immunization with crude snake venom (“traditional approach”) and immunization with selected key toxins isolated from the snake venom (“toxin oriented” approach). Fractions from B. arietans venom were isolated by size exclusion chromatography. Crude venom and samples containing serine proteases or metalloproteases were selected for the immunization of BALB/c mice. Anti-B. arietans and anti-serine proteases plasmas showed a similar recognition profile and higher titers and affinity than the anti-metalloproteases plasma. Cross-recognition of other Bitis venoms was observed, but with low intensity. Although the plasma of all experimental groups inhibited the enzymatic activity of B. arietans venom in vitro, in vivo protection was not achieved. Our results have shown limitations in both approaches considered. Based on this, we proposed a model of polyclonal, species-specific, monovalent antivenoms that could be used as a base to produce customizable polyvalent sera for use in sub-Saharan Africa.

4.
Biochim Biophys Acta Proteins Proteom ; 1870(7): 140795, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662639

RESUMEN

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.


Asunto(s)
Bothrops , Venenos de Crotálidos , Acetilglucosamina/metabolismo , Animales , Bothrops/metabolismo , Proteínas Portadoras/metabolismo , Venenos de Crotálidos/química , Glicoproteínas/química , Lectinas , Mamíferos/metabolismo , Ácido N-Acetilneuramínico , Polisacáridos , Proteoma/metabolismo
5.
Peptides ; 154: 170814, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644302

RESUMEN

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Proteasas 3C de Coronavirus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/metabolismo , Inhibidores de Proteasas , Proteómica
6.
Biochimie, v. 204, 140-153, jan. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4557

RESUMEN

Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.

7.
Biochim Biophys Acta Proteins Proteom, v. 1870, n. 7, 140795, jul. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4387

RESUMEN

Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.

8.
Peptides, v. 154, 170814, ago. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4377

RESUMEN

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus’ pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme’s primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.

9.
Toxins (Basel) ; 13(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34941683

RESUMEN

The Tityus serrulatus scorpion is considered the most dangerous of the Brazilian fauna due to the severe clinical manifestations in injured victims. Despite being abundant components of the venom, few linear peptides have been characterized so far, such as hypotensins. In vivo studies have demonstrated that hypotensin I (TsHpt-I) exerts hypotensive activity, with an angiotensin-converting enzyme (ACE)-independent mechanism of action. Since experiments have not yet been carried out to analyze the direct interaction of hypotensins with ACE, and to deepen the knowledge about these peptides, hypotensins I and II (TsHpt-II) were studied regarding their modulatory action over the activities of ACE and neprilysin (NEP), which are the peptidases involved in blood pressure control. Aiming to search for indications of possible pro-inflammatory action, hypotensins were also analyzed for their role in murine macrophage viability, the release of interleukins and phagocytic activity. TsHpt-I and -II were used in kinetic studies with the metallopeptidases ACE and NEP, and both hypotensins were able to increase the activity of ACE. TsHpt-I presented itself as an inhibitor of NEP, whereas TsHpt-II showed weak inhibition of the enzyme. The mechanism of inhibition of TsHpt-I in relation to NEP was defined as non-competitive, with an inhibition constant (Ki) of 4.35 µM. Concerning the analysis of cell viability and modulation of interleukin levels and phagocytic activity, BALB/c mice's naïve macrophages were used, and an increase in TNF production in the presence of TsHpt-I and -II was observed, as well as an increase in IL-6 production in the presence of TsHpt-II only. Both hypotensins were able to increase the phagocytic activity of murine macrophages in vitro. The difference between TsHpt-I and -II is the residue at position 15, with a glutamine in TsHpt-I and a glutamic acid in TsHpt-II. Despite this, kinetic analyzes and cell assays indicated different actions of TsHpt-I and -II. Taken together, these results suggest a new mechanism for the hypotensive effects of TsHpt-I and -II. Furthermore, the release of some interleukins also suggests a role for these peptides in the venom inflammatory response. Even though these molecules have been well studied, the present results suggest a new mechanism for the hypotensive effects of TsHpt-I.


Asunto(s)
Inflamación/inducido químicamente , Macrófagos Peritoneales/efectos de los fármacos , Metaloproteasas/metabolismo , Venenos de Escorpión/química , Animales , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Venenos de Escorpión/toxicidad
10.
Toxins (Basel) ; 13(8)2021 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-34437390

RESUMEN

Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 µg/mL (low) or 2.5 µg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.


Asunto(s)
Neoplasias de la Mama/metabolismo , Venenos de Crotálidos/farmacología , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Proteínas de Neoplasias/genética , Mapas de Interacción de Proteínas , Proteoma/efectos de los fármacos , Proteómica
11.
Toxins, v. 13, n. 12, 846, nov. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4050

RESUMEN

The Tityus serrulatus scorpion is considered the most dangerous of the Brazilian fauna due to the severe clinical manifestations in injured victims. Despite being abundant components of the venom, few linear peptides have been characterized so far, such as hypotensins. In vivo studies have demonstrated that hypotensin I (TsHpt-I) exerts hypotensive activity, with an angiotensin-converting enzyme (ACE)-independent mechanism of action. Since experiments have not yet been carried out to analyze the direct interaction of hypotensins with ACE, and to deepen the knowledge about these peptides, hypotensins I and II (TsHpt-II) were studied regarding their modulatory action over the activities of ACE and neprilysin (NEP), which are the peptidases involved in blood pressure control. Aiming to search for indications of possible pro-inflammatory action, hypotensins were also analyzed for their role in murine macrophage viability, the release of interleukins and phagocytic activity. TsHpt-I and -II were used in kinetic studies with the metallopeptidases ACE and NEP, and both hypotensins were able to increase the activity of ACE. TsHpt-I presented itself as an inhibitor of NEP, whereas TsHpt-II showed weak inhibition of the enzyme. The mechanism of inhibition of TsHpt-I in relation to NEP was defined as non-competitive, with an inhibition constant (Ki) of 4.35 μM. Concerning the analysis of cell viability and modulation of interleukin levels and phagocytic activity, BALB/c mice’s naïve macrophages were used, and an increase in TNF production in the presence of TsHpt-I and -II was observed, as well as an increase in IL-6 production in the presence of TsHpt-II only. Both hypotensins were able to increase the phagocytic activity of murine macrophages in vitro. The difference between TsHpt-I and -II is the residue at position 15, with a glutamine in TsHpt-I and a glutamic acid in TsHpt-II. Despite this, kinetic analyzes and cell assays indicated different actions of TsHpt-I and -II. Taken together, these results suggest a new mechanism for the hypotensive effects of TsHpt-I and -II. Furthermore, the release of some interleukins also suggests a role for these peptides in the venom inflammatory response. Even though these molecules have been well studied, the present results suggest a new mechanism for the hypotensive effects of TsHpt-I

12.
Toxins, v. 13, n. 8, 519, jul. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3919

RESUMEN

Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 μg/mL (low) or 2.5 μg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33088285

RESUMEN

BACKGROUND: Proteases play an important role for the proper physiological functions of the most diverse organisms. When unregulated, they are associated with several pathologies. Therefore, proteases have become potential therapeutic targets regarding the search for inhibitors. Snake venoms are complex mixtures of molecules that can feature a variety of functions, including peptidase inhibition. Considering this, the present study reports the purification and characterization of a Kunitz-type peptide present in the Dendroaspis polylepis venom as a simultaneous inhibitor of elastase-1 and cathepsin L. METHODS: The low molecular weight pool from D. polylepis venom was fractionated in reverse phase HPLC and all peaks were tested in fluorimetric assays. The selected fraction that presented inhibitory activity over both proteases was submitted to mass spectrometry analysis, and the obtained sequence was determined as a Kunitz-type serine protease inhibitor homolog dendrotoxin I. The molecular docking of the Kunitz peptide on the elastase was carried out in the program Z-DOCK, and the program RosettaDock was used to add hydrogens to the models, which were re-ranked using ZRANK program. RESULTS: The fraction containing the Kunitz molecule presented similar inhibition of both elastase-1 and cathepsin L. This Kunitz-type peptide was characterized as an uncompetitive inhibitor for elastase-1, presenting an inhibition constant (Ki) of 8 µM. The docking analysis led us to synthesize two peptides: PEP1, which was substrate for both elastase-1 and cathepsin L, and PEP2, a 30-mer cyclic peptide, which showed to be a cathepsin L competitive inhibitor, with a Ki of 1.96 µM, and an elastase-1 substrate. CONCLUSION: This work describes a Kunitz-type peptide toxin presenting inhibitory potential over serine and cysteine proteases, and this could contribute to further understand the envenomation process by D. polylepis. In addition, the PEP2 inhibits the cathepsin L activity with a low inhibition constant.

14.
Sci Rep ; 10(1): 12912, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737331

RESUMEN

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Bothrops , Venenos de Crotálidos/toxicidad , Hemorragia , Metaloproteasas/toxicidad , Peptidoglicano/sangre , Proteolisis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/sangre , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/sangre , Proteínas de Reptiles/toxicidad , Animales , Hemorragia/sangre , Hemorragia/inducido químicamente , Masculino , Ratones
15.
J. venom. anim. toxins incl. trop. dis ; 26: e20200037, 2020. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135157

RESUMEN

Proteases play an important role for the proper physiological functions of the most diverse organisms. When unregulated, they are associated with several pathologies. Therefore, proteases have become potential therapeutic targets regarding the search for inhibitors. Snake venoms are complex mixtures of molecules that can feature a variety of functions, including peptidase inhibition. Considering this, the present study reports the purification and characterization of a Kunitz-type peptide present in the Dendroaspis polylepis venom as a simultaneous inhibitor of elastase-1 and cathepsin L. Methods: The low molecular weight pool from D. polylepis venom was fractionated in reverse phase HPLC and all peaks were tested in fluorimetric assays. The selected fraction that presented inhibitory activity over both proteases was submitted to mass spectrometry analysis, and the obtained sequence was determined as a Kunitz-type serine protease inhibitor homolog dendrotoxin I. The molecular docking of the Kunitz peptide on the elastase was carried out in the program Z-DOCK, and the program RosettaDock was used to add hydrogens to the models, which were re-ranked using ZRANK program. Results: The fraction containing the Kunitz molecule presented similar inhibition of both elastase-1 and cathepsin L. This Kunitz-type peptide was characterized as an uncompetitive inhibitor for elastase-1, presenting an inhibition constant (Ki) of 8 μM. The docking analysis led us to synthesize two peptides: PEP1, which was substrate for both elastase-1 and cathepsin L, and PEP2, a 30-mer cyclic peptide, which showed to be a cathepsin L competitive inhibitor, with a Ki of 1.96 µM, and an elastase-1 substrate. Conclusion: This work describes a Kunitz-type peptide toxin presenting inhibitory potential over serine and cysteine proteases, and this could contribute to further understand the envenomation process by D. polylepis. In addition, the PEP2 inhibits the cathepsin L activity with a low inhibition constant.(AU)


Asunto(s)
Animales , Péptidos , Serina , Venenos de Serpiente , Proteasas de Cisteína , Elapidae , Péptido Hidrolasas/aislamiento & purificación , Espectrometría de Masas
16.
Oncotarget, v. 11, n. 51, p. 4770-4787, dez. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3473

RESUMEN

Most characterized angiogenic modulators are proteolytic fragments of structural plasma and/or matrix components. Herein, we have identified a novel anti-angiogenic peptide generated by the in vitro hydrolysis of the C-terminal moiety of the fibrinogen alpha chain, produced by the snake venom metalloprotease bothropasin (SVMP), a hemorrhagic proteinase in Bothrops jararaca venom. The 14-amino acids peptide (alphastatin-C) is a potent antagonist of basic fibroblast growth factor, induced endothelial cell (HUVEC-CS) proliferation, migration and capillary tube formation in matrigel. It also inhibits cell adhesion to fibronectin. The basis of the antagonism between bFGF and alphastatin-C is elucidated by the inhibition of various bFGF induced signaling pathways and their molecular components modification, whenever the combination of the stimuli is provided, in comparison to the treatment with bFGF only. To corroborate to the potential therapeutic use of alphastatin-C, we have chosen to perform in vivo assays in two distinct angiogenic settings. In chick model, alphastatin-C inhibits chorioallantoic membrane angiogenesis. In mouse, it efficiently reduces tumor number and volume in a melanoma model, due to the impairment of tumor neovascularization in treated mice. In contrast, we show that the alphastatin-C peptide induces arteriogenesis, increasing pial collateral density in neonate mice. alphastatin-C is an efficient new antiangiogenic FGF-associated agent in vitro, it is an inhibitor of embryonic and tumor vascularization in vivo while, it is an arteriogenic agent. The results also suggest that SVMPs can be used as in vitro biochemical tools to process plasma and/or matrix macromolecular components unraveling new angiostatic peptides.

17.
J Venom Anim Toxins Trop Dis, v. 26, e20200037, out. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3286

RESUMEN

Background: Proteases play an important role for the proper physiological functions of the most diverse organisms. When unregulated, they are associated with several pathologies. Therefore, proteases have become potential therapeutic targets regarding the search for inhibitors. Snake venoms are complex mixtures of molecules that can feature a variety of functions, including peptidase inhibition. Considering this, the present study reports the purification and characterization of a Kunitz-type peptide present in the Dendroaspis polylepis venom as a simultaneous inhibitor of elastase-1 and cathepsin L. Methods: The low molecular weight pool from D. polylepis venom was fractionated in reverse phase HPLC and all peaks were tested in fluorimetric assays. The selected fraction that presented inhibitory activity over both proteases was submitted to mass spectrometry analysis, and the obtained sequence was determined as a Kunitz-type serine protease inhibitor homolog dendrotoxin I. The molecular docking of the Kunitz peptide on the elastase was carried out in the program Z-DOCK, and the program RosettaDock was used to add hydrogens to the models, which were re-ranked using ZRANK program. Results: The fraction containing the Kunitz molecule presented similar inhibition of both elastase-1 and cathepsin L. This Kunitz-type peptide was characterized as an uncompetitive inhibitor for elastase-1, presenting an inhibition constant (Ki) of 8 μM. The docking analysis led us to synthesize two peptides: PEP1, which was substrate for both elastase-1 and cathepsin L, and PEP2, a 30-mer cyclic peptide, which showed to be a cathepsin L competitive inhibitor, with a Ki of 1.96 µM, and an elastase-1 substrate. Conclusion: This work describes a Kunitz-type peptide toxin presenting inhibitory potential over serine and cysteine proteases, and this could contribute to further understand the envenomation process by D. polylepis. In addition, the PEP2 inhibits the cathepsin L activity with a low inhibition constant.

18.
Sci Rep, v. 10, 12912, jul. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3121

RESUMEN

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.

19.
Toxicon ; 169: 59-67, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31494207

RESUMEN

In Brazil, snakes from the Bothrops genus are responsible for thousands of accidents, and their venoms are mainly made up of proteolytic enzymes. Although the antibothropic serum produced by the Butantan Institute is remarkable in saving lives, studies show that some symptoms observed in cases of envenoming are not efficiently neutralized. Moreover, our group has shown that the commercial antivenom does not fully neutralize in vitro some serine proteases present in the Bothrops jararaca venom. Therefore, this study focuses on a new method in the production of specific immunoglobulins capable of neutralizing the activities of these enzymes in vitro. For this, a pool of serine proteases that was not inhibited by the commercial antivenom, made up of four enzymes (KN-BJ2, BjSP, HS112 and BPA) from the B. jararaca venom was obtained through two chromatographic steps (DEAE-HPLC and C8-RP-HPLC). The identities of these proteases were confirmed by SDS-PAGE, followed by tryptic digestion and mass spectrometry analysis. This pool was inoculated into BALB/c and C57BL/6 mice, using SBA-15 as adjuvant, and the produced IgGs were purified by affinity chromatography. The sera were characterized by ELISA, avidity and proteolytic neutralization assays. Both animal models responded to the immunization, producing higher IgGs titers when compared to the commercial antivenom. The experimental serum from BALB/c mice presented a better hydrolysis inhibition of the selective fluorescent substrate for serine proteases (~80%) when compared to C57BL/6 (~25%) and the commercial antivenom (<1%) at the dose of 500:1 (weight of antivenom:weight of venom). These results show that a different immunization method using isolated serine proteases improves the toxins neutralizing efficacy and could lead to a better end product to be used as a supplemental medicine to the currently used immunotherapy.


Asunto(s)
Antivenenos/farmacología , Bothrops , Venenos de Crotálidos/enzimología , Inhibidores de Serina Proteinasa/farmacología , Animales , Brasil , Ensayo de Inmunoadsorción Enzimática , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Serina Proteasas/química
20.
Toxins (Basel) ; 11(4)2019 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-30935107

RESUMEN

Although omics studies have indicated presence of proteases on the Tityus serrulatus venom (TsV), little is known about the function of these molecules. The TsV contains metalloproteases that cleave a series of human neuropeptides, including the dynorphin A (1-13) and the members of neuropeptide Y family. Aiming to isolate the proteases responsible for this activity, the metalloserrulase 3 and 4 (TsMS 3 and TsMS 4) were purified after two chromatographic steps and identified by mass spectrometry analysis. The biochemical parameters (pH, temperature and cation effects) were determined for both proteases, and the catalytic parameters (Km, kcat, cleavage sites) of TsMS 4 over fluorescent substrate were obtained. The metalloserrulases have a high preference for cleaving neuropeptides but presented different primary specificities. For example, the Leu-enkephalin released from dynorphin A (1-13) hydrolysis was exclusively performed by TsMS 3. Neutralization assays using Butantan Institute antivenoms show that both metalloserrulases were well blocked. Although TsMS 3 and TsMS 4 were previously described through cDNA library studies using the venom gland, this is the first time that both these toxins were purified. Thus, this study represents a step further in understanding the mechanism of scorpion venom metalloproteases, which may act as possible neuropeptidases in the envenomation process.


Asunto(s)
Proteínas de Artrópodos , Metaloproteasas , Venenos de Escorpión/enzimología , Animales , Antivenenos/química , Proteínas de Artrópodos/química , Proteínas de Artrópodos/aislamiento & purificación , Catálisis , Humanos , Hidrólisis , Metaloproteasas/química , Metaloproteasas/aislamiento & purificación , Neuropéptidos/química , Escorpiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...