Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Children (Basel) ; 9(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35884007

RESUMEN

Adolescent idiopathic scoliosis (AIS) is characterized by the radiographic presence of a frontal plane curve, with a magnitude greater than 10° (Cobb technique). Diffusion MRI can be employed to assess the cerebral white matter. The aim of this study was to analyze, by means of MRI, the presence of any alteration in the connectivity of cerebral white matter in AIS patients. In this study, 22 patients with AIS participated. The imaging protocol consisted in T1 and diffusion-weighted acquisitions. Based on the information from one of the diffusion acquisitions, a whole brain tractography was performed with the MRtrix tool. Tractography is a method to deduce the trajectory of fiber bundles through the white matter based on the diffusion MRI data. By combining cortical segmentation with tractography, a connectivity matrix of size 84 × 84 was constructed using FA (fractional anisotropy), and the number of streamlines as connectomics metrics. The results obtained support the hypothesis that alterations in cerebral white matter connectivity in patients with adolescent idiopathic scoliosis (AIS) exist. We consider that the application of diffusion MRI, together with transcranial magnetic stimulation neurophysiologically, is useful to search the etiology of AIS.

2.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34577231

RESUMEN

Magnetic resonance is an imaging modality that implies a high complexity for radiographers. Despite some simulators having been developed for training purposes, we are not aware of any attempt to quantitatively measure their educational performance. The present study gives an answer to the question: Does an MRI simulator built on specific functional and non-functional requirements help radiographers learn MRI theoretical and practical concepts better than traditional educational method based on lectures? Our study was carried out in a single day by a total of 60 students of a main hospital in Madrid, Spain. The experiment followed a randomized pre-test post-test design with a control group that used a traditional educational method, and an experimental group that used our simulator. Knowledge level was assessed by means of an instrument with evidence of validity in its format and content, while its reliability was analyzed after the experiment. Statistical differences between both groups were measured. Significant statistical differences were found in favor of the participants who used the simulator for both the post-test score and the gain (difference between post-test and pre-test scores). The effect size turned out to be significant as well. In this work we evaluated a magnetic resonance simulation paradigm as a tool to help in the training of radiographers. The study shows that a simulator built on specific design requirements is a valuable complement to traditional education procedures, backed up with significant quantitative results.


Asunto(s)
Competencia Clínica , Entrenamiento Simulado , Simulación por Computador , Humanos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
3.
Comput Methods Programs Biomed ; 195: 105634, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32645627

RESUMEN

BACKGROUND AND OBJECTIVE: In this paper we propose to include an intelligent tutoring system (ITS) within a magnetic resonance (MR) simulator that has been developed in house. With this, we intend to measure the impact, in terms of user experience, of including an ITS in our simulator. METHODS: We thoroughly describe the integration procedure and we have tested the benefits of this integration by means of two actual educational experiences, with one of them using the simulator as a standalone tool, and the other with the joint use of simulator+ITS. The experiences have consisted of two online courses with a number of students around 180 in both of them, where measurements of usability, perceived utility and likelihood to recommend were collected. RESULTS: We have observed that the three measurements improved noticeably in the second course with respect to the first one; specifically, overall usability improved by 22.3%, perceived utility by an average of 55.1% and likelihood to recommend by 13.7%. In addition, quantitative measurements are complemented with comments in free text format directly provided by the students. Results show evidence on the benefits of integrating an ITS in terms of quantitative user experience, as well as qualitative comparative comments directly by students of both courses. CONCLUSIONS: This is the first time that an ITS is used within the scope of MR simulation for training purposes. Benefits of integrating an ITS within an MR simulator have been evaluated in terms of user experience, with satisfactory comparative results.


Asunto(s)
Competencia Clínica , Simulación por Computador , Estudios de Factibilidad , Humanos , Espectroscopía de Resonancia Magnética
4.
J Med Syst ; 44(1): 9, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792618

RESUMEN

A new web-based education-oriented magnetic resonance (MR) simulator is presented. We have identified the main requirements that this simulator should comply with, so that trainees can face useful practical tasks such as setting the exact slice position and its properties, selecting the correct protocol or fitting the parameters to acquire an image. The tool follows the client-server model. The client contains the interface that mimics the console of a real machine and several of its features. The server stores anatomical models and executes the bulk of the simulation. This cross-platform simulator has been used in two real educational scenarios. The acceptance of the tool has been measured using two criteria, namely, the System Usability Scale and the Likelihood to Recommend, both with satisfactory results. Therefore, we conclude that given the potential of the tool, it may play a relevant role for the training of MRI operators and other involved personnel.


Asunto(s)
Simulación por Computador/normas , Instrucción por Computador/normas , Imagen por Resonancia Magnética/normas , Radiología/educación , Entrenamiento Simulado/normas , Competencia Clínica , Humanos , Interfaz Usuario-Computador
5.
Ann Transl Med ; 7(22): 684, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31930085

RESUMEN

In the last decade, the clinical applications of three-dimensional (3D) printed models, in the neurosurgery field among others, have expanded widely based on several technical improvements in 3D printers, an increased variety of materials, but especially in postprocessing software. More commonly, physical models are obtained from a unique imaging technique with potential utilization in presurgical planning, generation/creation of patient-specific surgical material and personalized prosthesis or implants. Using specific software solutions, it is possible to obtain a more accurate segmentation of different anatomical and pathological structures and a more precise registration between different medical image sources allowing generating hybrid computed tomography (CT) and magnetic resonance imaging (MRI) 3D printed models. The need of neurosurgeons for a better understanding of the complex anatomy of central nervous system (CNS) and spine is pushing the use of these hybrid models, which are able to combine morphological information from CT and MRI, and also able to add physiological data from advanced MRI sequences, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion weighted imaging (PWI) and functional MRI (fMRI). The inclusion of physiopathological data from advanced MRI sequences enables neurosurgeons to identify those areas with increased biological aggressiveness within a certain lesion prior to surgery or biopsy procedures. Preliminary data support the use of this more accurate presurgical perspective, to select the better surgical approach, reduce the global length of surgery and minimize the rate of intraoperative complications, morbidities or patient recovery times after surgery. The use of 3D printed models in neurosurgery has also demonstrated to be a valid tool for surgeons training and to improve communication between specialists and patients. Further studies are needed to test the feasibility of this novel approach in common clinical practice and determine the degree of improvement the neurosurgeons receive and the potential impact on patient outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA