Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 56(Pt 2): 439-448, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37032962

RESUMEN

GaN nanowires (NWs) grown by molecular beam epitaxy on Ti films sputtered on Al2O3 are studied by X-ray diffraction (XRD) and grazing-incidence small-angle X-ray scattering (GISAXS). XRD, performed both in symmetric Bragg reflection mode and at grazing incidence, reveals Ti, TiN, Ti3O, Ti3Al and Ga2O3 crystallites with in-plane and out-of-plane lattice parameters intermediate between those of Al2O3 and GaN. These topotaxial crystallites in the Ti film, formed as a result of interfacial reactions and N exposure, possess little misorientation with respect to Al2O3. As a result, GaN NWs grow on the top TiN layer, possessing a high degree of epitaxial orientation with respect to the substrate. The measured GISAXS intensity distributions are modelled by the Monte Carlo method, taking into account the orientational distributions of NWs, the variety of their cross-sectional shapes and sizes, and the roughness of their side facets. The cross-sectional size distributions of the NWs and the relative fractions of the {1100} and {1120} side facets are determined.

2.
ACS Appl Mater Interfaces ; 13(49): 58301-58308, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851625

RESUMEN

Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34685211

RESUMEN

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffraction analysis indicates that the use of DMF/DMSO mixed solvents promotes the strengthening of a dominant 100 or 210 texturing, as compared the case of pure DMF, and that the haloplumbate chains always lie in a plane parallel to the substrate. Under specific DMF/DMSO solvent volume ratios, the prepared films are found to be highly stable in time (up to seven months under fluxing N2 and in the dark) and to highly moist conditions (up to 25 days at 78% relative humidity). Furthermore, for representative (PRSH)PbX3 films, resistance against ultraviolet exposure (λ = 380 nm) is investigated, showing complete stability after irradiation for up to 15 h at a power density of 600 mW/cm2. These results make such thin films interesting for highly stable perovskite-based (opto)electronic devices.

4.
Nat Commun ; 11(1): 3566, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678084

RESUMEN

Paper is the ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems, which, combined with two-dimensional materials, could be exploited in many Internet-of-Things applications, ranging from wearable electronics to smart packaging. Here we report high-performance MoS2 field-effect transistors on paper fabricated with a "channel array" approach, combining the advantages of two large-area techniques: chemical vapor deposition and inkjet-printing. The first allows the pre-deposition of a pattern of MoS2; the second, the printing of dielectric layers, contacts, and connections to complete transistors and circuits fabrication. Average ION/IOFF of 8 × 103 (up to 5 × 104) and mobility of 5.5 cm2 V-1 s-1 (up to 26 cm2 V-1 s-1) are obtained. Fully functional integrated circuits of digital and analog building blocks, such as logic gates and current mirrors, are demonstrated, highlighting the potential of this approach for ubiquitous electronics on paper.

5.
Nanoscale ; 12(12): 6708-6716, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32186302

RESUMEN

We report room temperature Hall mobility measurements, low temperature magnetoresistance analysis and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO2/Si substrates. We found that thermal annealing in vacuum at 450 °C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.3 Ω sq-1 after annealing, and are n-type doped, with carrier concentrations in the low 1020 cm-3 range. The charge carrier mobility is found to increase with increasing film thickness, reaching a maximum value of 33 cm2 V-1 s-1 for a 480 nm-thick film printed on SiO2/Si. Low-frequency noise characterization shows a 1/f noise behavior and a Hooge parameter in the range of 0.1-1. These results represent the first in-depth electrical and noise characterization of transport in inkjet-printed graphene films, able to provide physical insights on the mechanisms at play.

6.
Nano Lett ; 17(9): 5213-5221, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28654280

RESUMEN

We demonstrate an all-epitaxial and scalable growth approach to fabricate single-crystalline GaN nanowires on graphene by plasma-assisted molecular beam epitaxy. As substrate, we explore several types of epitaxial graphene layer structures synthesized on SiC. The different structures differ mainly in their total number of graphene layers. Because graphene is found to be etched under active N exposure, the direct growth of GaN nanowires on graphene is only achieved on multilayer graphene structures. The analysis of the nanowire ensembles prepared on multilayer graphene by Raman spectroscopy and transmission electron microscopy reveals the presence of graphene underneath as well as in between nanowires, as desired for the use of this material as contact layer in nanowire-based devices. The nanowires nucleate preferentially at step edges, are vertical, well aligned, epitaxial, and of comparable structural quality as similar structures fabricated on conventional substrates.

7.
Nano Lett ; 17(1): 63-70, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073259

RESUMEN

We present a conceptually novel approach to achieve selective area epitaxy of GaN nanowires. The approach is based on the fact that these nanostructures do not form in plasma-assisted molecular beam epitaxy on structurally and chemically uniform cation-polar substrates. By in situ depositing and nitridating Si on a Ga-polar GaN film, we locally reverse the polarity to induce the selective area epitaxy of N-polar GaN nanowires. We show that the nanowire number density can be controlled over several orders of magnitude by varying the amount of predeposited Si. Using this growth approach, we demonstrate the synthesis of single-crystalline and uncoalesced nanowires with diameters as small as 20 nm. The achievement of nanowire number densities low enough to prevent the shadowing of the nanowire sidewalls from the impinging fluxes paves the way for the realization of homogeneous core-shell heterostructures without the need of using ex situ prepatterned substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...