Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(12): 819, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38086796

RESUMEN

The thioredoxin (TXN) system is an NADPH + H+/FAD redox-triggered effector that sustains homeostasis, bioenergetics, detoxifying drug networks, and cell survival in oxidative stress-related diseases. Elovanoid (ELV)-N34 is an endogenously formed lipid mediator in neural cells from omega-3 fatty acid precursors that modulate neuroinflammation and senescence gene programming when reduction-oxidation (redox) homeostasis is disrupted, enhancing cell survival. Limited proteolysis (LiP) screening of human retinal pigment epithelial (RPE) cells identified TXNRD1 isoforms 2, 3, or 5, the reductase of the TXN system, as an intracellular target of ELV-N34. TXNRD1 silencing confirmed that the ELV-N34 target was isoform 2 or 3. This lipid mediator induces TXNRD1 structure changes that modify the FAD interface domain, leading to its activity modulation. The addition of ELV-N34 decreased membrane and cytosolic TXNRD1 activity, suggesting localizations for the targeted reductase. These results show for the first time that the lipid mediator ELV-N34 directly modulates TXNRD1 activity, underling its protection in several pathologies when uncompensated oxidative stress (UOS) evolves.


Asunto(s)
Estrés Oxidativo , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/genética , Oxidación-Reducción , Isoformas de Proteínas/metabolismo , Citosol/metabolismo , Lípidos
3.
Cell Mol Neurobiol ; 43(3): 1077-1096, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35622188

RESUMEN

Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Neuroprotección , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Proteína Wnt-5a , Receptores Frizzled/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233124

RESUMEN

We previously described the participation of canonical phospholipase D isoforms (PLD1 and PLD2) in the inflammatory response of retinal pigment epithelium (RPE) cells exposed to high glucose concentrations (HG). Here, we studied the role of the PLD pathway in RPE phagocytic function. For this purpose, ARPE-19 cells were exposed to HG (33 mM) or to normal glucose concentration (NG, 5.5 mM) and phagocytosis was measured using pHrodo™ green bioparticles® or photoreceptor outer segments (POS). HG exposure for 48 and 72 h reduced phagocytic function of ARPE-19 cells, and this loss of function was prevented when cells were treated with 5 µM of PLD1 (VU0359595 or PLD1i) or PLD2 (VU0285655-1 or PLD2i) selective inhibitors. Furthermore, PLD1i and PLD2i did not affect RPE phagocytosis under physiological conditions and prevented oxidative stress induced by HG. In addition, we demonstrated PLD1 and PLD2 expression in ABC cells, a novel human RPE cell line. Under physiological conditions, PLD1i and PLD2i did not affect ABC cell viability, and partial silencing of both PLDs did not affect ABC cell POS phagocytosis. In conclusion, PLD1i and PLD2i prevent the loss of phagocytic function of RPE cells exposed to HG without affecting RPE function or viability under non-inflammatory conditions.


Asunto(s)
Fosfolipasa D , Línea Celular , Células Cultivadas , Glucosa/metabolismo , Humanos , Fagocitosis/fisiología , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
5.
Front Neurosci ; 16: 926629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873810

RESUMEN

Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.

8.
Commun Biol ; 4(1): 1360, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887495

RESUMEN

Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Degeneración Retiniana/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
9.
Oncogene ; 40(38): 5741-5751, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34333551

RESUMEN

Cancer cells exhibit dysregulation of critical genes including those involved in lipid biosynthesis, with subsequent defects in metabolism. Here, we show that ELOngation of Very Long chain fatty acids protein 4 (ELOVL4), a rate-limiting enzyme in the biosynthesis of very-long polyunsaturated fatty acids (n-3, ≥28 C), is expressed and transcriptionally repressed by the oncogene MYCN in neuroblastoma cells. In keeping, ELOVL4 positively regulates neuronal differentiation and lipids droplets accumulation in neuroblastoma cells. At the molecular level we found that MYCN binds to the promoter of ELOVL4 in close proximity to the histone deacetylases HDAC1, HDAC2, and the transcription factor Sp1 that can cooperate in the repression of ELOVL4 expression. Accordingly, in vitro differentiation results in an increase of fatty acid with 34 carbons with 6 double bonds (FA34:6); and when MYCN is silenced, FA34:6 metabolite is increased compared with the scrambled. In addition, analysis of large neuroblastoma datasets revealed that ELOVL4 expression is highly expressed in localized clinical stages 1 and 2, and low in high-risk stages 3 and 4. More importantly, high expression of ELOVL4 stratifies a subsets of neuroblastoma patients with good prognosis. Indeed, ELOVL4 expression is a marker of better overall clinical survival also in MYCN not amplified patients and in those with neuroblastoma-associated mutations. In summary, our findings indicate that MYCN, by repressing the expression of ELOVL4 and lipid metabolism, contributes to the progression of neuroblastoma.


Asunto(s)
Regulación hacia Abajo , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Mutación , Clasificación del Tumor , Estadificación de Neoplasias , Neuroblastoma/genética , Neuroblastoma/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Análisis de Supervivencia
10.
Sci Rep ; 11(1): 12787, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140611

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic collapse around the world. Effective treatments to mitigate this viral infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells (HCEC) in culture challenged with IFNγ as models of the eye surface to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein to angiotensin-converting enzyme 2 (ACE2). We found that the lipid mediators, elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i) decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ-stimulated HCEC. There was also a concomitant decrease in the binding of Spike RBD with the lipid treatments. Using RNA-seq analysis, we uncovered that the lipid mediators also attenuated the expression of pro-inflammatoy cytokines participating in hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to open therapeutic avenues to counteract virus attachment and entrance to the body.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Senescencia Celular/efectos de los fármacos , Lesiones de la Cornea/metabolismo , Citocinas/metabolismo , Ácidos Docosahexaenoicos/análogos & derivados , Ácidos Docosahexaenoicos/farmacología , Descubrimiento de Drogas/métodos , Dominios Proteicos , Transducción de Señal/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Epitelio Corneal/citología , Humanos , Lipoxinas/farmacología , Masculino , Unión Proteica , Ratas , Ratas Sprague-Dawley , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
11.
Sci Rep ; 11(1): 12324, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112906

RESUMEN

The pro-homeostatic lipid mediators elovanoids (ELVs) attenuate cell binding and entrance of the SARS-CoV-2 receptor-binding domain (RBD) as well as of the SARS-CoV-2 virus in human primary alveoli cells in culture. We uncovered that very-long-chain polyunsaturated fatty acid precursors (VLC-PUFA, n-3) activate ELV biosynthesis in lung cells. Both ELVs and their precursors reduce the binding to RBD. ELVs downregulate angiotensin-converting enzyme 2 (ACE2) and enhance the expression of a set of protective proteins hindering cell surface virus binding and upregulating defensive proteins against lung damage. In addition, ELVs and their precursors decreased the signal of spike (S) protein found in SARS-CoV-2 infected cells, suggesting that the lipids curb viral infection. These findings open avenues for potential preventive and disease-modifiable therapeutic approaches for COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , COVID-19/metabolismo , Células Cultivadas , Humanos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Res Sq ; 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32818210

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic tall around the world. Effective treatments to mitigate this virus infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells in culture challenged with IFNγ to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to angiotensin-converting enzyme 2 (ACE2). Elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i), among the lipid mediators studied, consistently decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ stimulated human corneal epithelial cells (HCEC). There was also a concomitant decrease in the binding of spike RBD with the lipid treatments. Concurrently, we uncovered that the lipid mediators also attenuated the expression of cytokines that participate in the cytokine storm, hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to opening therapeutic avenues for COVID-19 by counteracting virus attachment and entrance to the eye and other cells and the ensuing disruptions of homeostasis.

13.
Cell Death Differ ; 24(6): 1091-1099, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28430183

RESUMEN

Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.


Asunto(s)
Isquemia Encefálica/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Estrés Oxidativo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Isquemia Encefálica/fisiopatología , Línea Celular , Regulación de la Expresión Génica , Humanos , Neuronas/metabolismo , Neuronas/fisiología , Accidente Cerebrovascular/fisiopatología , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
14.
Cell Mol Neurobiol ; 35(8): 1127-36, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26047923

RESUMEN

Parkinson's disease (PD) does not manifest clinically until 80 % of striatal dopamine is reduced, thus most neuronal damage takes place before the patient presents clinical symptoms. Therefore, it is important to develop preventive strategies for this disease. In the experimental models of PD, 1-methyl-4-phenylpyridinium ion (MPP+) and rotenone induce toxicity in dopaminergic neurons. Neuroprotectin D1 (NPD1) displays neuroprotection in cells undergoing proteotoxic and oxidative stress. In the present report, we established an in vitro model using a primary neuronal culture from mesencephalic embryonic mouse tissue in which 17-20 % of neurons were TH-positive when differentiated in vitro. NPD1 (100 nM) rescued cells from apoptosis induced by MPP+ and rotenone, and the dendritic arbor of surviving neurons was examined using Sholl analysis. Rotenone, as well as MPP+ and its precursor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), severely promoted retraction of dendritic arbor distal segments, thus decreasing the maximum branch order reached. On average, NPD1 counteracted the effects of MPP+ on the dendritic arborization, but failed to do so in the rotenone-treated neurons. However, rotenone did decrease the Sholl intersection number from radii 25 to 125 µm, and NPD1 did restore the pattern to control levels. Similarly, NPD1 partially reverted the dendrite retraction caused by MPP+ and MPTP. These results suggest that the apoptosis occurring in mesencephalic TH-positive neurons is not a direct consequence of mitochondrial dysfunction alone and that NPD1 signaling may be counteracting this damage. These findings lay the groundwork for the use of the in vitro model developed for future studies and for the search of specific molecular events that NPD1 targets to prevent early neurodegeneration in PD.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/uso terapéutico , Neuronas/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/prevención & control , Tirosina 3-Monooxigenasa , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Ácidos Docosahexaenoicos/farmacología , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Neuronas/metabolismo , Trastornos Parkinsonianos/metabolismo , Ratas , Ratas Sprague-Dawley , Rotenona/toxicidad , Tirosina 3-Monooxigenasa/metabolismo
16.
Nat Commun ; 6: 6228, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25736573

RESUMEN

The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells' functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1(-/-) mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1(-/-) mice. RPE-rich eyecup cultures from AdipoR1(-/-) reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Receptores de Adiponectina/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Animales , Electrorretinografía , Hibridación in Situ , Ratones , Ratones Noqueados , Fosfatidilcolinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-24107502

RESUMEN

The significance of the selective enrichment in omega-3 essential fatty acids (docosahexaenoyl - DHA - chains of membrane phospholipids, 22C and 6 double bonds) in the nervous system (e.g. synaptic membranes and dendrites) has remained, until recently, incompletely understood. While studying mechanisms of neuronal survival, we contributed to the discovery of a docosanoid synthesized by 15-lipoxygenase-1 from DHA, which we dubbed neuroprotectin D1 (NPD1;10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15E,19Z hexaenoic acid). NPD1 is a docosanoid because it is derived from a 22C precursor (DHA), unlike eicosanoids, which are derived from the 20C arachidonic acid family of essential fatty acids not enriched in the nervous system. We found that NPD1 is promptly made in response to oxidative stress, seizures and brain ischemia-reperfusion. NPD1 is neuroprotective in experimental brain damage, retinal pigment epithelial cells, and in human brain cells. Thus, NPD1 acts as a protective sentinel, one of the very first defenses activated when cell homeostasis is threatened by neurodegenerations. NPD1 also has been shown to have a specificity and potency that provides beneficial bioactivity during initiation and early progression of neuronal and retinal degenerations, epilepsy and stroke. In short, NPD1 regulation promotes homeostatic regulation of neural circuitry integrity.


Asunto(s)
Encefalopatías/metabolismo , Encéfalo/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Estrés Oxidativo , Retina/metabolismo , Degeneración Retiniana/metabolismo , Animales , Encéfalo/patología , Isquemia Encefálica/metabolismo , Epilepsia/metabolismo , Humanos , Retina/patología , Accidente Cerebrovascular/metabolismo
18.
J Biol Chem ; 287(28): 23726-39, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22511762

RESUMEN

Neurodegenerative diseases share two common features: enhanced oxidative stress and cellular inability to scavenge structurally damaged abnormal proteins. Pathogenesis of polyglutamine (poly(Q)) diseases involves increased protein misfolding, along with ubiquitin and chaperon protein-containing nuclear aggregates. In spinocerebellar ataxia, the brain and retina undergo degeneration. Neuroprotectin D1 (NPD1) is made on-demand in the nervous system and retinal pigment epithelial (RPE) cells in response to oxidative stress, which activates prosurvival signaling via regulation of gene expression and other processes. We hypothesized that protein misfolding-induced proteotoxic stress triggers NPD1 synthesis. We used ARPE-19 cells as a cellular model to assess stress due to ataxin-1 82Q protein expression and determine whether NPD1 prevents apoptosis. Ectopic ataxin-1 expression induced RPE cell apoptosis, which was abrogated by 100 nm docosahexaenoic acid, 10 ng/ml pigment epithelium-derived factor, or NPD1. Similarly, NPD1 was protective in neurons and primary human RPE cells. Furthermore, when ataxin-1 82Q was expressed in 15-lipoxygenase-1-deficient cells, apoptosis was greatly enhanced, and only NPD1 (50 nm) rescued cells from death. NPD1 reduced misfolded ataxin-1-induced accumulation of proapoptotic Bax in the cytoplasm, suggesting that NPD1 acts by preventing proapoptotic signaling pathways from occurring. Finally, NPD1 signaling interfered with ataxin-1/capicua repression of gene expression and decreased phosphorylated ataxin-1 in an Akt-independent manner, suggesting that NPD1 signaling modulates formation or stabilization of ataxin-1 complexes. These data suggest that 1) NPD1 synthesis is an early response induced by proteotoxic stress due to abnormally folded ataxin-1, and 2) NPD1 promotes cell survival through modulating stabilization of ataxin-1 functional complexes and pro-/antiapoptotic and inflammatory pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Proteínas Nucleares/metabolismo , Ataxina-1 , Ataxinas , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/genética , Ácidos Docosahexaenoicos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Microscopía Fluorescente , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/genética , Péptidos/genética , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Estrés Fisiológico , Transfección
19.
J Lipid Res ; 51(8): 2018-31, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20382842

RESUMEN

Retinal degenerative diseases result in retinal pigment epithelial (RPE) and photoreceptor cell loss. These cells are continuously exposed to the environment (light) and to potentially pro-oxidative conditions, as the retina's oxygen consumption is very high. There is also a high flux of docosahexaenoic acid (DHA), a PUFA that moves through the blood stream toward photoreceptors and between them and RPE cells. Photoreceptor outer segment shedding and phagocytosis intermittently renews photoreceptor membranes. DHA is converted through 15-lipoxygenase-1 into neuroprotectin D1 (NPD1), a potent mediator that evokes counteracting cell-protective, anti-inflammatory, pro-survival repair signaling, including the induction of anti-apoptotic proteins and inhibition of pro-apoptotic proteins. Thus, NPD1 triggers activation of signaling pathway/s that modulate/s pro-apoptotic signals, promoting cell survival. This review provides an overview of DHA in photoreceptors and describes the ability of RPE cells to synthesize NPD1 from DHA. It also describes the role of neurotrophins as agonists of NPD1 synthesis and how photoreceptor phagocytosis induces refractoriness to oxidative stress in RPE cells, with concomitant NPD1 synthesis.


Asunto(s)
Diferenciación Celular , Ácidos Docosahexaenoicos/metabolismo , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Humanos , Factores de Crecimiento Nervioso/metabolismo , Estrés Oxidativo , Epitelio Pigmentado de la Retina/irrigación sanguínea , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
20.
Adv Exp Med Biol ; 664: 663-70, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20238071

RESUMEN

Retinal pigment epithelial (RPE) cells are the most restrictive layer of the three components of the outer Blood-Retina Barrier, preventing the passage of biomolecules in relation to size and charge and thus preserving a controlled environment for the photoreceptors. The retinal pigment epithelium is a tight structure that, when disrupted as a cause or consequence of pathological conditions, deeply affects the neural retina. Since adult human RPE cells are not replicative cells, their preservation is of major interest for the biomedical field due to their loss in many retino-degenerative pathologies. There are several triggers that elicit reactive oxygen species (ROS) formation in normal and pathological circumstances. When the production of these species overwhelms the scavenging and detoxifying systems, their activity results in programmed cell death. Docosahexaenoic acid (DHA) is an essential lipid that is conspicuously accumulated in photoreceptors and RPE cells in the retina. DHA and its oxygenation product, neuroprotectin D1 (NPD1), are major players in the protection of these cells and the retina. NPD1 promotes the synthesis of anti-apoptotic proteins of certain members of the Bcl-2 family and blocks the expression of pro-inflammatory proteins like cyclooxygenase-2.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Humanos , Inflamación/complicaciones , Inflamación/patología , Degeneración Retiniana/complicaciones , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA