Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods ; 230: 1-8, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038505

RESUMEN

Carbon dots (CD) are widely investigated particles with interesting fluorescent properties which are reported to be used for various purposes, as they are biocompatible, resistant to photobleaching and with tuneable properties depending on the specific CD surface chemistry. In this work, we report on the possibility to use opportunely designed CD to distinguish among isobaric peptides almost undistinguishable by mass spectrometry, as well as to monitor protein aggregation phenomena. Particularly, cell-penetrating peptides containing the carnosine moiety at different positions in the peptide chain produce sequence specific fluorescent signals. Analogously, different insulin oligomerization states can also be distinguished by the newly proposed experimental approach. The latter is here described in details and can be potentially applied to any kind of peptide or protein.

2.
Chemistry ; : e202402346, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054921

RESUMEN

Every biological and physicochemical process occurring in a fluid phase depends on the diffusion coefficient (D) of the species in solution. In the present work, a model to describe and fit the behaviour of D as a function of structure and extensive thermodynamics parameters in binary solutions of linear chain organic molecules is developed. Supporting experimental and computational evidences for this model are obtained by measuring D for a series of n-alcohols through a novel surface plasmon resonance method and molecular dynamics simulations. This allows to propose a kind of combined analysis to explain the dependence of D on various thermodynamic and structural parameters. The results suggest that for small linear systems in the range from 0 to 200 g mol-1 and under the assumption that the diffusive activation energy is a linear function of mass, D is strictly dependent on the molecular shape and on the relative strength of the solute-solvent intermolecular forces represented by a parameter named R. The newly proposed approach can be utilized to characterize and monitor progressive changes in physicochemical properties for any investigated species upon increasing the dimension of the aggregate/molecule along a certain direction.

3.
J Sci Food Agric ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775623

RESUMEN

BACKGROUND: Obesity is recognized as a lifestyle-related disease and the main risk factor for a series of pathological conditions, including cardiovascular diseases, hypertension and type 2 diabetes. Citrus limon is an important medicinal plant, and its fruits are rich in flavonoids investigated for their potential in managing obesity. In the present work, a green extraction applied to lemon squeezing waste (LSW) was optimized to recover pancreatic lipase (PL) inhibitors. RESULTS: The microwave-assisted procedure yielded an extract with higher lipase inhibitory activity than those obtained by maceration and ultrasound. The main compounds present in the extract were identified by high-performance liquid chromatographic-mass spectrometric analysis, and hesperidin, eriocitrin and 4'-methyllucenin II were isolated. The three compounds were evaluated for in vitro PL inhibitory activity, and 4'-methyllucenin II resulted in the most promising inhibitor (IC50 = 12.1 µmol L-1; Ki = 62.2 µmol L-1). Multispectroscopic approaches suggested the three flavonoids act as competitive inhibitors and the binding studies indicated a greater interaction between PL and 4'-methyllucenin II. Docking analysis indicated the significant interactions of the three flavonoids with the PL catalytic site. CONCLUSION: The present work highlights flavonoid glycosides as promising PL inhibitors and proposes LSW as a safe ingredient for the preparation of food supplements for managing obesity. © 2024 Society of Chemical Industry.

4.
Protein Sci ; 33(4): e4962, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501507

RESUMEN

Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Humanos , Resonancia por Plasmón de Superficie/métodos , Insulina/química , Reproducibilidad de los Resultados , Metales , Iones , Técnicas Biosensibles/métodos
5.
Biomedicines ; 11(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979937

RESUMEN

BACKGROUND: Although the antidepressant potential of repetitive transcranial magnetic stimulation (rTMS), the pleiotropic effects in geriatric depression (GD) are poorly investigated. We tested rTMS on depression, cognitive performance, growth/neurotrophic factors, cerebral blood flow (CBF) to transcranial Doppler sonography (TCD), and motor-evoked potentials (MEPs) to TMS in GD. METHODS: In this case series study, six drug-resistant subjects (median age 68.0 years) underwent MEPs at baseline and after 3 weeks of 10 Hz rTMS on the left dorsolateral prefrontal cortex. The percentage change of serum nerve growth factor, vascular endothelial growth factor, brain-derived growth factor, insulin-like growth factor-1, and angiogenin was obtained. Assessments were performed at baseline, and at the end of rTMS; psychocognitive tests were also repeated after 1, 3, and 6 months. RESULTS: Chronic cerebrovascular disease was evident in five patients. No adverse/undesirable effect was reported. An improvement in mood was observed after rTMS but not at follow-up. Electrophysiological data to TMS remained unchanged, except for an increase in the right median MEP amplitude. TCD and neurotrophic/growth factors did not change. CONCLUSIONS: We were unable to detect a relevant impact of high-frequency rTMS on mood, cognition, cortical microcircuits, neurotrophic/growth factors, and CBF. Cerebrovascular disease and exposure to multiple pharmacological treatments might have contributed.

6.
Biomolecules ; 12(8)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892326

RESUMEN

Mature neurotrophic factors and their propeptides play key roles ranging from the regulation of neuronal growth and differentiation to prominent participation in neuronal survival and recovery after injury. Their signaling pathways sculpture neuronal circuits during brain development and regulate adaptive neuroplasticity. In addition, neurotrophic factors provide trophic support for damaged neurons, giving them a greater capacity to survive and maintain their potential to regenerate their axons. Therefore, the modulation of these factors can be a valuable target for treating or preventing neurologic disorders and age-dependent cognitive decline. Neuroregenerative medicine can take great advantage by the deepening of our knowledge on the molecular mechanisms underlying the properties of neurotrophic factors. It is indeed an intriguing topic that a significant interplay between neurotrophic factors and various metals can modulate the outcome of neuronal recovery. This review is particularly focused on the roles of GDNF, BDNF and NGF in motoneuron survival and recovery from injuries and evaluates the therapeutic potential of various neurotrophic factors in neuronal regeneration. The key role of metal homeostasis/dyshomeostasis and metal interaction with neurotrophic factors on neuronal pathophysiology is also highlighted as a novel mechanism and potential target for neuronal recovery. The progress in mechanistic studies in the field of neurotrophic factor-mediated neuroprotection and neural regeneration, aiming at a complete understanding of integrated pathways, offers possibilities for the development of novel neuroregenerative therapeutic approaches.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Factor Neurotrófico Derivado de la Línea Celular Glial , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neuronas Motoras/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa
7.
Metallomics ; 11(2): 278-281, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30627720

RESUMEN

Four specifically designed IDE mutants have been used to unveil the molecular basis of peptidase versus E1-like activity of the enzyme. We have found that physiological concentrations of copper(ii) ions inhibit the proteolytic activity of the enzyme towards small and large substrates but have no effect on the E1-like activity of the enzyme.


Asunto(s)
Insulisina/genética , Insulisina/metabolismo , Metales/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Cobre/metabolismo , Relación Estructura-Actividad , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA