Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leukemia ; 32(3): 654-662, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28935990

RESUMEN

In chronic lymphocytic leukemia (CLL), stabilizing mutations of NOTCH1, affecting up to 10-15% of cases, have been associated to poor prognosis, disease progression and refractoriness to chemotherapy. NOTCH1 mutations are significantly overrepresented in trisomy 12 CLL, a disease subset frequently expressing CD49d, the α4 chain of the very-late-activation-4 integrin, a well-known key regulator of microenviromental interactions, and negative prognosticator in CLL. In the present study, by analysing a wide cohort of 1180 CLL, we observed a very strong association between the presence of NOTCH1 mutations and the expression of CD49d (P<0.0001), occurring also outside the trisomy 12 CLL subset. Using both the MEC-1 CLL-like cells stably transfected with the NOTCH1 intracellular domain and primary CLL cells bearing a mutated or wild-type NOTCH1 gene configuration, we provide evidence that triggering of the NOTCH1 pathway resulted in a positive CD49d expression regulation, which was driven by a NOTCH1-dependent activation of nuclear factot-κB (NF-κB). Consistently, pharmacological inhibition of the NOTCH1 and/or of the NF-κB pathways resulted in impaired NF-κB nuclear translocation with consequent down-modulation of CD49d expression. Altogether, our data link for the first time NOTCH1 mutations to CD49d expression regulation through the involvement of the NF-κB pathway in CLL.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Integrina alfa4/genética , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Receptor Notch1/genética , Humanos , Integrina alfa4/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , FN-kappa B/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal
2.
Extremophiles ; 21(4): 775-788, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28500387

RESUMEN

Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.


Asunto(s)
Adaptación Fisiológica , Extremófilos/fisiología , Thermus/fisiología , Calor , Espectrometría de Masas , Metabolómica , Proteómica , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...