Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(23): 10713-10725, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38805564

RESUMEN

Understanding the fine structural details of inhibitor binding at the active site of metalloenzymes can have a profound impact on the rational drug design targeted to this broad class of biomolecules. Structural techniques such as NMR, cryo-EM, and X-ray crystallography can provide bond lengths and angles, but the uncertainties in these measurements can be as large as the range of values that have been observed for these quantities in all the published structures. This uncertainty is far too large to allow for reliable calculations at the quantum chemical (QC) levels for developing precise structure-activity relationships or for improving the energetic considerations in protein-inhibitor studies. Therefore, the need arises to rely upon computational methods to refine the active site structures well beyond the resolution obtained with routine application of structural methods. In a recent paper, we have shown that it is possible to refine the active site of cobalt(II)-substituted MMP12, a metalloprotein that is a relevant drug target, by matching to the experimental pseudocontact shifts (PCS) those calculated using multireference ab initio QC methods. The computational cost of this methodology becomes a significant bottleneck when the starting structure is not sufficiently close to the final one, which is often the case with biomolecular structures. To tackle this problem, we have developed an approach based on a neural network (NN) and a support vector regression (SVR) and applied it to the refinement of the active site structure of oxalate-inhibited human carbonic anhydrase 2 (hCAII), another prototypical metalloprotein target. The refined structure gives a remarkably good agreement between the QC-calculated and the experimental PCS. This study not only contributes to the knowledge of CAII but also demonstrates the utility of combining machine learning (ML) algorithms with QC calculations, offering a promising avenue for investigating other drug targets and complex biological systems in general.


Asunto(s)
Dominio Catalítico , Aprendizaje Automático , Metaloproteínas , Teoría Cuántica , Metaloproteínas/química , Humanos , Modelos Moleculares , Metaloproteinasa 12 de la Matriz/química , Metaloproteinasa 12 de la Matriz/metabolismo
2.
Protein Sci ; 33(3): e4910, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358125

RESUMEN

Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19 F NMR spectra. By combining 19 F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.


Asunto(s)
Aminoácidos , Proteínas , Animales , Humanos , Aminoácidos/química , Proteínas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Flúor/química , Mamíferos
3.
ACS Med Chem Lett ; 15(2): 250-257, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38352832

RESUMEN

We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CLPro). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CLPro ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CLPro forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CLPro in cultured cells. This study paves the way for the future applicability of peptidomimetic PROTACs to tackle 3CLPro-dependent viral infections.

4.
Angew Chem Int Ed Engl ; 62(31): e202303202, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276329

RESUMEN

Several protein-drug conjugates are currently being used in cancer therapy. These conjugates rely on cytotoxic organic compounds that are covalently attached to the carrier proteins or that interact with them via non-covalent interactions. Human transthyretin (TTR), a physiological protein, has already been identified as a possible carrier protein for the delivery of cytotoxic drugs. Here we show the structure-guided development of a new stable cytotoxic molecule based on a known strong binder of TTR and a well-established anticancer drug. This example is used to demonstrate the importance of the integration of multiple biophysical and structural techniques, encompassing microscale thermophoresis, X-ray crystallography and NMR. In particular, we show that solid-state NMR has the ability to reveal effects caused by ligand binding which are more easily relatable to structural and dynamical alterations that impact the stability of macromolecular complexes.


Asunto(s)
Proteínas Portadoras , Imagen por Resonancia Magnética , Humanos , Preparaciones Farmacéuticas , Espectroscopía de Resonancia Magnética , Proteínas Portadoras/química , Cristalografía por Rayos X
5.
J Am Chem Soc ; 145(2): 1389-1399, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36604341

RESUMEN

In-cell NMR spectroscopy is a powerful approach to study protein structure and function in the native cellular environment. It provides precious insights into the folding, maturation, interactions, and ligand binding of important pharmacological targets directly in human cells. However, its widespread application is hampered by the fact that soluble globular proteins often interact with large cellular components, causing severe line broadening in conventional heteronuclear NMR experiments. 19F NMR can overcome this issue, as fluorine atoms incorporated in proteins can be detected by simple background-free 1D NMR spectra. Here, we show that fluorinated amino acids can be easily incorporated in proteins expressed in human cells by employing a medium switch strategy. This straightforward approach allows the incorporation of different fluorinated amino acids in the protein of interest, reaching fluorination efficiencies up to 60%, as confirmed by mass spectrometry and X-ray crystallography. The versatility of the approach is shown by performing 19F in-cell NMR on several proteins, including those that would otherwise be invisible by 1H-15N in-cell NMR. We apply the approach to observe the interaction between an intracellular target, carbonic anhydrase 2, and its inhibitors, and to investigate how the formation of a complex between superoxide dismutase 1 and its chaperone CCS modulates the interaction of the chaperone subunit with the cellular environment.


Asunto(s)
Flúor , Chaperonas Moleculares , Humanos , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Flúor/química , Aminoácidos
6.
Biomolecules ; 12(11)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421689

RESUMEN

Gold compounds have a long tradition in medicine and offer many opportunities for new therapeutic applications. Herein, we evaluated the lead compound Auranofin and five related gold(I) complexes as possible inhibitors of SARS-CoV-2 Main Protease (SARS-CoV-2 Mpro), a validated drug target for the COVID-19 disease. The investigational panel of gold compounds included Auranofin; three halido analogues, i.e., Au(PEt3)Cl, Au(PEt3)Br, and Au(PEt3)I; and two gold carbene complexes, i.e., Au(NHC)Cl and [Au(NHC)2]PF6. Notably, all these gold compounds, with the only exception of [Au(NHC)2]PF6, turned out to be potent inhibitors of the catalytic activity of SARS-CoV-2 Mpro: the measured Ki values were in the range 2.1-0.4 µM. The reactions of the various gold compounds with SARS-CoV-2 Mpro were subsequently investigated through electrospray ionization (ESI) mass spectrometry (MS) upon a careful optimization of the experimental conditions; the ESI MS spectra provided clear evidence for the formation of tight metallodrug-protein adducts and for the coordination of well defined gold-containing fragments to the SARS-CoV-2 Mpro, again with the only exception of [Au(NHC)2]PF6, The metal-protein stoichiometry was unambiguously determined for the resulting species. The crystal structures of the metallodrug- Mpro adducts were solved in the case of Au(PEt3)Br and Au(NHC)Cl. These crystal structures show that gold coordination occurs at the level of catalytic Cys 145 in the case of Au(NHC)Cl and at the level of both Cys 145 and Cys 156 for Au(PEt3)Br. Tight coordination of gold atoms to functionally relevant cysteine residues is believed to represent the true molecular basis of strong enzyme inhibition.


Asunto(s)
Auranofina , Tratamiento Farmacológico de COVID-19 , Humanos , Auranofina/farmacología , Proteínas Virales/química , SARS-CoV-2 , Compuestos de Oro/farmacología , Cisteína , Oro/farmacología
7.
Biomolecules ; 12(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35883478

RESUMEN

Acinetobacter baumannii is a Gram-negative pathogen, known to acquire resistance to antibiotics used in the clinic. The RNA-binding proteome of this bacterium is poorly characterized, in particular for what concerns the proteins containing RNA Recognition Motif (RRM). Here, we browsed the A. baumannii proteome for homologous proteins to the human HuR(ELAVL1), an RNA binding protein containing three RRMs. We identified a unique locus that we called AB-Elavl, coding for a protein with a single RRM with an average of 34% identity to the first HuR RRM. We also widen the research to the genomes of all the bacteria, finding 227 entries in 12 bacterial phyla. Notably we observed a partial evolutionary divergence between the RNP1 and RNP2 conserved regions present in the prokaryotes in comparison to the metazoan consensus sequence. We checked the expression at the transcript and protein level, cloned the gene and expressed the recombinant protein. The X-ray and NMR structural characterization of the recombinant AB-Elavl revealed that the protein maintained the typical ß1α1ß2ß3α2ß4 and three-dimensional organization of eukaryotic RRMs. The biochemical analyses showed that, although the RNP1 and RNP2 show differences, it can bind to AU-rich regions like the human HuR, but with less specificity and lower affinity. Therefore, we identified an RRM-containing RNA-binding protein actually expressed in A. baumannii.


Asunto(s)
Acinetobacter baumannii , Motivo de Reconocimiento de ARN , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Animales , Proteínas Portadoras/metabolismo , Humanos , Unión Proteica/genética , Proteoma/metabolismo , ARN/metabolismo , Motivo de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Biomolecules ; 12(7)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35883565

RESUMEN

The importance of mitochondria in mammalian cells is widely known. Several biochemical reactions and pathways take place within mitochondria: among them, there are those involving the biogenesis of the iron-sulfur (Fe-S) clusters. The latter are evolutionarily conserved, ubiquitous inorganic cofactors, performing a variety of functions, such as electron transport, enzymatic catalysis, DNA maintenance, and gene expression regulation. The synthesis and distribution of Fe-S clusters are strictly controlled cellular processes that involve several mitochondrial proteins that specifically interact each other to form a complex machinery (Iron Sulfur Cluster assembly machinery, ISC machinery hereafter). This machinery ensures the correct assembly of both [2Fe-2S] and [4Fe-4S] clusters and their insertion in the mitochondrial target proteins. The present review provides a structural and molecular overview of the rare diseases associated with the genes encoding for the accessory proteins of the ISC machinery (i.e., GLRX5, ISCA1, ISCA2, IBA57, FDX2, BOLA3, IND1 and NFU1) involved in the assembly and insertion of [4Fe-4S] clusters in mitochondrial proteins. The disease-related missense mutations were mapped on the 3D structures of these accessory proteins or of their protein complexes, and the possible impact that these mutations have on their specific activity/function in the frame of the mitochondrial [4Fe-4S] protein biogenesis is described.


Asunto(s)
Proteínas Hierro-Azufre , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedades Raras/metabolismo , Azufre/metabolismo
9.
Microorganisms ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35456744

RESUMEN

Microorganisms possess the potential to adapt to fluctuations in environmental parameters, and their evolution is driven by the continuous generation of mutations. The reversion of auxotrophic mutations has been widely studied; however, little is known about the reversion of frameshift mutations resulting in amino acid auxotrophy and on the structure and functioning of the protein encoded by the revertant mutated gene. The aims of this work were to analyze the appearance of reverse mutations over time and under different selective pressures and to investigate revertant enzymes' three-dimensional structures and their correlation with a different growth ability. Escherichia coli FB182 strain, carrying the hisF892 single nucleotide deletion resulting in histidine auxotrophy, was subjected to different selective pressures, and revertant mutants were isolated and characterized. The obtained results allowed us to identify different indels of different lengths located in different positions in the hisF gene, and relations with the incubation time and the selective pressure applied were observed. Moreover, the structure of the different mutant proteins was consistent with the respective revertant ability to grow in absence of histidine, highlighting a correlation between the mutations and the catalytic activity of the mutated HisF enzyme.

10.
Commun Biol ; 4(1): 949, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376783

RESUMEN

Malate dehydrogenases (MDHs) sustain tumor growth and carbon metabolism by pathogens including Plasmodium falciparum. However, clinical success of MDH inhibitors is absent, as current small molecule approaches targeting the active site are unselective. The presence of an allosteric binding site at oligomeric interface allows the development of more specific inhibitors. To this end we performed a differential NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface. Subsequent biophysical and biochemical experiments of an identified fragment indicate an allosteric mechanism of 4-(3,4-difluorophenyl) thiazol-2-amine (4DT) inhibition by impacting the formation of the active site loop, located >30 Å from the 4DT binding site. Further characterization of the more tractable homolog 4-phenylthiazol-2-amine (4PA) and 16 other derivatives are also reported. These data pave the way for downstream development of more selective molecules by utilizing the oligomeric interfaces showing higher species sequence divergence than the MDH active site.


Asunto(s)
Malato Deshidrogenasa/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Sitios de Unión , Dominio Catalítico , Malato Deshidrogenasa/química , Modelos Moleculares , Plasmodium falciparum/química , Proteínas Protozoarias/química
11.
Chem Commun (Camb) ; 57(64): 7910-7913, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34278402

RESUMEN

Structural data on the SARS-CoV-2 main protease in complex with a zinc-containing organic inhibitor are already present in the literature and gave hints on the presence of a zinc binding site involving the catalytically relevant cysteine and histidine residues. In this paper, the structural basis of ionic zinc binding to the SARS-CoV-2 main protease has been elucidated by X-ray crystallography. The zinc binding affinity and its ability to inhibit the SARS-CoV-2 main protease have been investigated. These findings provide solid ground for the design of potent and selective metal-conjugated inhibitors of the SARS-CoV-2 main protease.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/enzimología , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Humanos , Conformación Proteica , Zinc/metabolismo
12.
Angew Chem Int Ed Engl ; 60(27): 14960-14966, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595173

RESUMEN

Metalloproteins constitute a significant fraction of the proteome of all organisms and their characterization is critical for both basic sciences and biomedical applications. A large portion of metalloproteins bind paramagnetic metal ions, and paramagnetic NMR spectroscopy has been widely used in their structural characterization. However, the signals of nuclei in the immediate vicinity of the metal center are often broadened beyond detection. In this work, we show that it is possible to determine the coordination environment of the paramagnetic metal in the protein at a resolution inaccessible to other techniques. Taking the structure of a diamagnetic analogue as a starting point, a geometry optimization is carried out by fitting the pseudocontact shifts obtained from first principles quantum chemical calculations to the experimental ones.


Asunto(s)
Metaloproteínas/química , Fenómenos Magnéticos , Resonancia Magnética Nuclear Biomolecular
13.
Magn Reson (Gott) ; 2(1): 25-31, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37904766

RESUMEN

Cross-relaxation terms in paramagnetic systems that reorient rigidly with slow tumbling times can increase the effective longitudinal relaxation rates of protons of more than 1 order of magnitude. This is evaluated by simulating the time evolution of the nuclear magnetization using a complete relaxation rate-matrix approach. The calculations show that the Solomon dependence of the paramagnetic relaxation rates on the metal-proton distance (as r-6) can be incorrect for protons farther than 15 Šfrom the metal and thus can cause sizable errors in R1-derived distance restraints used, for instance, for protein structure determination. Furthermore, the chemical exchange of these protons with bulk water protons can enhance the relaxation rate of the solvent protons by far more than expected from the paramagnetic Solomon equation. Therefore, it may contribute significantly to the water proton relaxation rates measured at magnetic resonance imaging (MRI) magnetic fields in the presence of slow-rotating nanoparticles containing paramagnetic ions and a large number of exchangeable surface protons.

14.
J Struct Biol X ; 4: 100019, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32647823

RESUMEN

X-ray crystallography and NMR contain complementary information for the structural characterization of biological macromolecules. X-ray diffraction is primarily sensitive to the overall shape of the molecule, whereas NMR is mostly sensitive to the atomic detail. Their combination can therefore provide a stronger justification for the resulting structure. For their combination we have recently proposed REFMAC-NMR, which relies on primary data from both techniques for joint refinement. This possibility raises the compelling question of how far the complementarity can be extended. In this paper, we describe an integrative approach to the refinement with NMR data of four X-ray structures of hen-egg-white lysozyme, solved at atomic resolution in four different crystal forms, and we demonstrate that the outcome critically depends on the crystal form itself, reflecting the sensitivity of NMR to fine details.

15.
Biomolecules ; 11(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396930

RESUMEN

Nature has evolved several molecular machineries to promote the formation at physiological conditions of inorganic materials, which would otherwise be formed in extreme conditions. The molecular determinants of this process have been established over the last decade, identifying a strong role of electrostatics in the first steps of the precipitation. However, no conclusive, structure-based evidence has been provided so far. In this manuscript, we test the binding of lysozyme with silica and titania potential precursors. In contrast with the absence of structural information about the interaction with the silica precursor, we observe the interaction with a mononuclear titanium(IV) species, which is found to occur in a region rich of positive charges.


Asunto(s)
Muramidasa/química , Óxidos/química , Titanio/química , Compuestos Inorgánicos/química , Electricidad Estática
16.
Bioorg Med Chem ; 27(24): 115177, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31711716

RESUMEN

The oxytocinase subfamily of M1 aminopeptidases consists of three members, ERAP1, ERAP2 and IRAP that play several important biological roles, including key functions in the generation of antigenic peptides that drive human immune responses. They represent emerging targets for pharmacological manipulation of the immune system, albeit lack of selective inhibitors is hampering these efforts. Most of the previously explored small-molecule binders target the active site of the enzymes via strong interactions with the catalytic zinc(II) atom and, while achieving increased potency, they suffer in selectivity. Continuing our earlier efforts on weaker zinc(II) binding groups (ZBG), like the 3,4-diaminobenzoic acid derivatives (DABA), we herein synthesized and biochemically evaluated analogues of nine potentially weak ZBGs, based on differential substitutions of functionalized pyridinone- and pyridinethione-scaffolds, nicotinic-, isonicotinic-, aminobenzoic- and hydrazinobenzoic-acids. Crystallographic analysis of two analogues in complex with a metalloprotease (MMP-12) revealed unexpected binding topologies, consistent with the observed affinities. Our results suggest that the potency of the compounds as inhibitors of ERAP1, ERAP2 and IRAP is primarily driven by the occupation of active-site specificity pockets and their proper orientation within the enzymes.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Proteína Antagonista del Receptor de Interleucina 1/antagonistas & inhibidores , Zinc/química , Aminopeptidasas/metabolismo , Sitios de Unión , Diseño de Fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Menor/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Zinc/metabolismo
17.
Biomolecules ; 9(8)2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416261

RESUMEN

With the recent technological and computational advancements, structural biology has begun to tackle more and more difficult questions, including complex biochemical pathways and transient interactions among macromolecules. This has demonstrated that, to approach the complexity of biology, one single technique is largely insufficient and unable to yield thorough answers, whereas integrated approaches have been more and more adopted with successful results. Traditional structural techniques (X-ray crystallography and Nuclear Magnetic Resonance (NMR)) and the emerging ones (cryo-electron microscopy (cryo-EM), Small Angle X-ray Scattering (SAXS)), together with molecular modeling, have pros and cons which very nicely complement one another. In this review, three examples of synergistic approaches chosen from our previous research will be revisited. The first shows how the joint use of both solution and solid-state NMR (SSNMR), X-ray crystallography, and cryo-EM is crucial to elucidate the structure of polyethylene glycol (PEG)ylated asparaginase, which would not be obtainable through any of the techniques taken alone. The second deals with the integrated use of NMR, X-ray crystallography, and SAXS in order to elucidate the catalytic mechanism of an enzyme that is based on the flexibility of the enzyme itself. The third one shows how it is possible to put together experimental data from X-ray crystallography and NMR restraints in order to refine a protein model in order to obtain a structure which simultaneously satisfies both experimental datasets and is therefore closer to the 'real structure'.


Asunto(s)
Asparaginasa/química , Polietilenglicoles/química , Asparaginasa/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Polietilenglicoles/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Acta Crystallogr D Struct Biol ; 75(Pt 3): 317-324, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950402

RESUMEN

This article describes the approach used to solve the structure of human IBA57 in-house by 5-amino-2,4,6-triiodoisophthalic acid (I3C) high-energy-remote single-wavelength anomalous dispersion (SAD) phasing. Multiple orientations of the same triclinic crystal were exploited to acquire sufficient real data multiplicity for phasing. How the collection of an in-house native data set and its joint use with the I3C derivative through a SIRAS approach decreases the data multiplicity needed by almost 50% is described. Furthermore, it is illustrated that there is a clear data-multiplicity threshold value for success and failure in phasing, and how adding further data does not significantly affect substructure solution and model building. To our knowledge, this is the only structure present in the PDB that has been solved in-house by remote SAD phasing in space group P1 using only one crystal. All of the raw data used, derived from the different orientations, have been uploaded to Zenodo in order to enable software developers to improve methods for data processing and structure solution, and for educational purposes.


Asunto(s)
Proteínas Portadoras/química , Cristalización/métodos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
19.
Methods Mol Biol ; 1929: 487-499, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30710292

RESUMEN

This paper takes the cue from the previously solved crystal structure of human apo-S100Z and compares it with that of the calcium-bound S100Z from zebrafish in order to stress, for this particular S100, the significant role of the presence of calcium in promoting supramolecular assemblies with likely biological meaning. This consideration is then expanded through a wider review on analogous situations concerning all other S100s for which there is crystallographic o biochemical evidence of how the presence of calcium promotes the formation of quaternary complexes.The paper also deals with some considerations on the quality of the crystals obtained for the solved members of this family and on the need for experimental phasing for solving some of the structures where the good general sequence homology among the members of the family would have suggested molecular replacement (MR) as the easiest way to solve them.These considerations, along with the PCA analysis carried out on all the known S100s, further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation for several members of this family of proteins.


Asunto(s)
Calcio/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Pez Cebra/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Homología de Secuencia , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
20.
J Biol Inorg Chem ; 24(1): 91-101, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30470900

RESUMEN

Partial symmetry, i.e., the presence of more than one molecule in the asymmetric unit of a crystal, is a relatively rare phenomenon in small-molecule crystallography, but is quite common in protein crystallography, where it is typically known as non-crystallographic symmetry (NCS). Several papers in literature propose molecular determinants such as crystal contacts, thermal factors, or TLS parameters as an explanation for the phenomenon of intrinsic asymmetry among molecules that are in principle equivalent. Nevertheless, are all of the above determinants the cause or are they rather the effect? In the general frame of the NCS often observed in crystals of biomolecules, this paper deals with nickel(II)-substituted human carbonic anhydrase(II) (hCAII) and its SAD structure determination at the nickel edge. The structure revealed two non-equivalent molecules in the asymmetric unit, the presence of a secondary nickel-binding site at the N-terminus of both molecules (which had never been found before in the nickel-substituted enzyme) and two different coordination geometries of the active site nickel (hexa-coordinated in one molecule and mainly penta-coordinated in the other). The above-mentioned standard molecular crystallographic determinants of this asymmetry are analyzed and presented in detail for this particular case. From these considerations, we speculate on the existence of a fundamental, although yet unknown, common cause for the partial symmetry that is so often encountered in X-ray structures of biomolecules.


Asunto(s)
Anhidrasa Carbónica II/química , Níquel/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...