Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Enzymes ; 45: 289-310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31627881

RESUMEN

PrimPol is the second primase discovered in eukaryotic cells, whose function is to restart the stalled replication forks during both mitochondrial and nuclear DNA replication. This chapter revises our current knowledge about the mechanism of synthesis of DNA primers by human PrimPol, and the importance of its distinctive Zn-finger domain (ZnFD). After PrimPol forms a binary complex with ssDNA, the formation of the pre-ternary complex strictly requires the presence of Mn2+ ions to stabilize the interaction of the incoming deoxynucleotide at the 3'-site. The capacity to bind both ssDNA template and 3'-deoxynucleotide was shown to reside in the AEP core of PrimPol, with ZnFD being dispensable at these two early steps of the primase reaction. Sugar selection favoring dNTPs versus NTPs at the 3' site is mediated by a specific tyrosine (Tyr100) acting as a steric gate. Besides, a specific glutamate residue (Glu116) conforming a singular A motif (DxE) promotes the use of Mn2+ to stabilize the pre-ternary complex. Mirroring the function of the PriL subunit of dimeric AEP primases, the ZnFD of PrimPol is crucial to stabilize the initiating 5'-nucleotide, specifically interacting with the gamma-phosphate. Such an interaction is crucial to optimize dimer formation and the subsequent translocation events leading to the processive synthesis of a mature DNA primer. Finally, the capacity of PrimPol to tolerate lesions is discussed in the context of its DNA primase function, and its potential as a TLS primase.


Asunto(s)
ADN Primasa/metabolismo , Cartilla de ADN/biosíntesis , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...