Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(6): 8729-8750, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35616289

RESUMEN

Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.


Asunto(s)
Glioblastoma , Glioma , Inmunoterapia , Nanopartículas , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Quimiocina CXCL12/antagonistas & inhibidores , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioma/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Transducción de Señal , Microambiente Tumoral
2.
Neurosurgery ; 83(6): 1306-1316, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462368

RESUMEN

BACKGROUND: Thirty per cent of cancer patients develop spine metastases with a substantial number leading to spinal cord compression and neurological deficits. Many demonstrate a propensity toward metastasis to the posterior third of the vertebral body. The dura, the outer layer of the meninges, lies in intimate contact with the posterior border of the vertebral body and has been shown to influence adjacent bone. The effects of the dura on bone marrow and cancer cells have not been examined. Understanding the biology of spinal metastasis will provide insights into mechanisms of cancer growth and allow for new treatment strategies. OBJECTIVE: To examine the extent to which dura influences bone marrow/tumor cell metastatic characteristics. METHODS: Dura conditioned media (DCM) from primary dura was examined for the ability to stimulate tumor cell proliferation/invasion and to alter bone marrow cell populations. RNA sequencing of dural fibroblasts was performed to examine expression of cytokines and growth factors. RESULTS: DCM induced a significant increase in invasion and proliferation of multiple tumor cell lines, and of patient-derived primary spinal metastatic cells. DCM also increased the proliferation of bone marrow myeloid cells, inducing expression of immunosuppressive markers. RNA sequencing of dural fibroblasts demonstrated abundant expression of cytokines and growth factors involved in cancer/immune pathways. CONCLUSION: Factors released by primary dural cells induce proliferation of tumor cells and alter bone marrow to create a fertile environment for tumor growth. The dura therefore may play an important role in the increased incidence of metastases to adjacent bone.


Asunto(s)
Citocinas/metabolismo , Duramadre/citología , Fibroblastos/metabolismo , Células Mieloides/metabolismo , Neoplasias/patología , Animales , Células de la Médula Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Citocinas/farmacología , Duramadre/metabolismo , Humanos , Masculino , Ratones , Metástasis de la Neoplasia/patología
3.
Expert Opin Biol Ther ; 16(10): 1245-64, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27411023

RESUMEN

INTRODUCTION: Outcome for glioma (GBM) remains dismal despite advances in therapeutic interventions including chemotherapy, radiotherapy and surgical resection. The overall survival benefit observed with immunotherapies in cancers such as melanoma and prostate cancer has fuelled research into evaluating immunotherapies for GBM. AREAS COVERED: Preclinical studies have brought a wealth of information for improving the prognosis of GBM and multiple clinical studies are evaluating a wide array of immunotherapies for GBM patients. This review highlights advances in the development of immunotherapeutic approaches. We discuss the strategies and outcomes of active and passive immunotherapies for GBM including vaccination strategies, gene therapy, check point blockade and adoptive T cell therapies. We also focus on immunoediting and tumor neoantigens that can impact the efficacy of immunotherapies. EXPERT OPINION: Encouraging results have been observed with immunotherapeutic strategies; some clinical trials are reaching phase III. Significant progress has been made in unraveling the molecular and genetic heterogeneity of GBM and its implications to disease prognosis. There is now consensus related to the critical need to incorporate tumor heterogeneity into the design of therapeutic approaches. Recent data also indicates that an efficacious treatment strategy will need to be combinatorial and personalized to the tumor genetic signature.


Asunto(s)
Glioblastoma/inmunología , Glioblastoma/terapia , Glioma/inmunología , Glioma/terapia , Inmunoterapia/tendencias , Animales , Predicción , Terapia Genética/métodos , Terapia Genética/tendencias , Glioblastoma/diagnóstico , Glioma/diagnóstico , Humanos , Inmunización Pasiva/métodos , Inmunización Pasiva/tendencias , Inmunoterapia/métodos , Pronóstico , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
4.
Expert Opin Biol Ther ; 14(9): 1241-57, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24773178

RESUMEN

INTRODUCTION: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED: This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION: The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.


Asunto(s)
Adenoviridae , Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Vectores Genéticos , Glioma/terapia , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Glioblastoma/terapia , Humanos , Inmunomodulación/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...