Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 14(11): e0008860, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33211688

RESUMEN

Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31-66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County.


Asunto(s)
Culex/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Permetrina/farmacología , Canales de Sodio Activados por Voltaje/genética , Animales , Infecciones por Arbovirus/prevención & control , Infecciones por Arbovirus/transmisión , Secuencia de Bases , Culex/efectos de los fármacos , Culex/virología , Femenino , Genoma/genética , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Mutación , Texas
2.
Insect Biochem Mol Biol ; 117: 103290, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31790798

RESUMEN

In arthropods, eicosanoids derived from the oxygenated metabolism of arachidonic acid are significant in mediating immune responses. However, the lack of information about insect eicosanoid receptors is an obstacle to completely decipher immune mechanisms underlying both eicosanoid downstream signal cascades and their relationship to immune pathogen-associated molecular patterns (PAMPs). Here, we cloned and sequenced a G protein-coupled receptor (MW 46.16 kDa) from the model lepidopteran, Manduca sexta (Sphingidae). The receptor shares similarity of amino acid motifs to human prostaglandin E2 (PGE2) receptors, and phylogenetic analysis supports its classification as a prostaglandin receptor. In agreement, the recombinant receptor was activated by PGE2 resulting in intracellular cAMP increase, and therefore designated MansePGE2R. Expression of MansePGE2R in Sf9 cells in which the endogenous orthologous receptor had been silenced showed similar cAMP increase upon PGE2 challenge. Receptor transcript expression was identified in various tissues in larvae and female adults, including Malpighian tubules, fat body, gut and hemocytes, and in female ovaries. In addition to the cDNA cloned that encodes the functional receptor, an mRNA was found featuring the poly-A tail but lacking the predicted transmembrane (TM) regions 2 and 3, suggesting the possibility that internally deleted receptor proteins exist in insects. Immunocytochemistry and in situ hybridization revealed that among hemocytes, the receptor was exclusively localized in the oenocytoids. Larval immune challenges injecting bacterial components showed that lipoteichoic acid (LTA) increased MansePGE2R expression in hemocytes. In contrast, injection of LPS or peptidoglycan did not increase MansePGE2R transcript levels in hemocytes, suggesting the LTA-associated increase in receptor transcript is regulated through a distinct pathway. This study provides the first characterization of an eicosanoid receptor in insects, and paves the way for establishing the hierarchy in signaling steps required for establishing insect immune responses to infections.


Asunto(s)
Expresión Génica , Proteínas de Insectos/genética , Lipopolisacáridos/metabolismo , Manduca/genética , Subtipo EP2 de Receptores de Prostaglandina E/genética , Ácidos Teicoicos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Regulación de la Expresión Génica , Hemocitos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Manduca/metabolismo , Filogenia , Subtipo EP2 de Receptores de Prostaglandina E/química , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Alineación de Secuencia
3.
PLoS One ; 14(5): e0216800, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31107891

RESUMEN

The reproductive ground plan hypothesis proposes that gene networks regulating foraging behavior and reproductive female physiology in social insects emerged from ancestral gene and endocrine factor networks. Expression of storage proteins such as vitellogenins and hexamerins is an example of this co-option. Hexamerins, through their role modulating juvenile hormone availability, are involved in caste determination in termites. The genome of the fire ant (Solenopsis invicta) encodes four hexamerin genes, hexamerin-like (LOC105192919, hereafter called hexamerin 1), hexamerin (LOC105204474, hereafter called hexamerin 2), arylphorin subunit alpha-like, and arylphorin subunit beta. In this study, a phylogenetic analysis of the S. invicta hexamerins determined that each predicted protein clustered with one of the orthologous Apis mellifera hexamerins. Gene expression analyses by RT-qPCR revealed differential expression of the hexamerins between queens and workers, and between specific task-allocated workers (nurses and foragers). Queens and nurses had significantly higher expression of all genes when compared to foragers. Hexamerin 1 was expressed at higher levels in queens, while hexamerin 2 and arylphorin subunit beta were expressed at significantly higher levels in nurses. Arylphorin subunit alpha-like showed no significant difference in expression between virgin queens and nurses. Additionally, we analyzed the relationship between the expression of hexamerin genes and S-hydroprene, a juvenile hormone analog. Significant changes in hexamerin expression were recorded in nurses, virgin queens, and foragers 12 h after application of the analog. Hexamerin 1 and arylphorin subunit alpha-like expression were significantly lower after analog application in virgin queens. In foragers, hexamerin 2 and arylphorin subunit beta were significantly lower after analog application, while in nurses expression of all genes were significantly lower after analog application. Our results suggest that in S. invicta hexamerin genes could be associated with reproductive division of labor and task-allocation of workers.


Asunto(s)
Hormigas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/biosíntesis , Hormonas Juveniles/farmacología , Vitelogeninas/biosíntesis , Animales , Hormigas/genética , Femenino , Proteínas de Insectos/genética , Vitelogeninas/genética
4.
Gen Comp Endocrinol ; 278: 89-103, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576645

RESUMEN

Knowledge of G protein-coupled receptors (GPCRs) and their signaling modalities is crucial to advancing insect endocrinology, specifically in highly successful invasive social insects, such as the red imported fire ant, Solenopsis invicta Buren. In the first published draft genome of S. invicta, emphasis was placed on the annotation of olfactory receptors, and only the number of predicted GPCR genes was reported. Without an organized and curated resource for GPCRs, it will be difficult to test hypotheses on the endocrine role of neuropeptide hormones, or the function of neurotransmitters and neuromodulators. Therefore, we mined the S. invicta genome for GPCRs and found 324 predicted transcripts encoded by 125 predicted loci and improved the annotation of 55 of these loci. Among them are sixteen GPCRs that are currently annotated as "uncharacterized proteins". Further, the phylogenetic analysis of class A neuropeptide receptors presented here and the comparative listing of GPCRs in the hymenopterans S. invicta, Apis mellifera (both eusocial), Nasonia vitripennis (solitary), and the solitary model dipteran Drosophila melanogaster will facilitate comparative endocrinological studies related to social insect evolution and diversity. We compiled the 24 G protein transcripts predicted (15 α, 7 ß, and 2 γ) from 12 G protein genes (5 α, 5 ß, and 2 γ). Reproductive division of labor is extreme in this ant species, therefore, we compared GPCR and G protein gene expression among worker, mated queen and alate virgin queen ant brain transcriptomes. Transcripts for ten GPCRs and two G proteins were differentially expressed between queen and worker brains. The differentially expressed GPCRs are candidate receptors to explore hypotheses on division of labor in this species.


Asunto(s)
Hormigas/genética , Proteínas de Unión al GTP/metabolismo , Jerarquia Social , Especies Introducidas , Anotación de Secuencia Molecular , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Transcriptoma/genética , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Filogenia , Receptores Acoplados a Proteínas G/química
5.
Ecol Evol ; 8(8): 4312-4327, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721300

RESUMEN

Transcriptomes of dissected brains from virgin alate and dealate mated queens from polygyne fire ants (Solenopsis invicta) were analyzed and compared. Thirteen genes were upregulated in mated queen brain, and nine were downregulated. While many of the regulated genes were either uncharacterized or noncoding RNAs, those annotated genes included two hexamerin proteins, astakine neuropeptide, serine proteases, and serine protease inhibitors. We found that for select differentially expressed genes in the brain, changes in gene expression were most likely driven by the changes in physiological state (i.e., age, nutritional status, or dominance rank) or in social environment (released from influence of primer pheromone). This was concluded because virgins that dealated after being separated from mated queens showed similar patterns of gene expression in the brain as those of mated queens for hexamerin 1, astakine, and XR_850909. Abaecin (XR_850725), however, appears upregulated only after mating. Therefore, our findings contribute to distinguish how specific gene networks, especially those influenced by queen primer pheromone, are regulated in queen ants. Additionally, to identify brain signaling pathways, we mined the fire ant genome and compiled a list of G-protein-coupled receptors (GPCRs). The expression level of GPCRs and other genes in the "genetic toolkit" in the brains of virgin alates and mated dealate queens is reported.

6.
Insects ; 8(4)2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113099

RESUMEN

Mosquitoes are vectors of pathogens that cause diseases of medical and veterinary importance. Female mosquitoes transmit these pathogens while taking a blood meal, which most species require to produce eggs. The period after a blood meal is a time of extreme physiological change that requires rapid coordination of specific tissues. Gap junctions (GJ) are intercellular channels that aid in the coordination of cells within tissues via the direct transfer of certain small molecules and ions between cells. Evolutionarily distinct groups of proteins form the gap junctions of vertebrate and invertebrate animals (connexins and innexins, respectively). Aedes aegypti mosquitoes possess six genes encoding innexins: inx1, inx2, inx3, inx4, inx7, and inx8. The goal of this study was to identify potential roles of innexins in the physiology of mosquitoes after a blood meal by using qPCR to quantify their mRNA expression in adult females at 3 h and 24 h post-blood meal (PBM) relative to non-blood-fed controls. We found that at 24 h PBM, expression levels of inx2, inx3, and inx4 mRNAs increased; inx2 was the most highly upregulated innexin in key tissues associated with blood-meal digestion and egg production (i.e., the midgut and ovaries, respectively). However, knocking down inx2 mRNA levels by over 75% via RNA interference had no significant effect on fecundity. Altogether, our results suggest that a blood meal influences the molecular expression of innexins in mosquitoes, but their specific physiological roles remain to be elucidated.

7.
J Insect Physiol ; 103: 98-106, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29107658

RESUMEN

In adult dipteran insects (flies), the crop is a diverticulum of the esophagus that serves as a food storage organ. The crop pumps stored contents into the alimentary canal for digestion and absorption. The pumping is mediated by peristaltic contractions of the crop musculature. In adult female mosquitoes, the crop (ventral diverticulum) selectively stores sugar solutions (e.g., nectar); proteinaceous blood meals by-pass the crop and are transferred directly to the midgut for digestion. The mechanisms that regulate crop contractions have never been investigated in mosquitoes. Here we provide the first physiological characterization of the contractile properties of the mosquito crop and explore the mechanisms that regulate crop contractions. Using an in vitro bioassay we found that the isolated crop spontaneously contracts in Ringer solution for at least 1 h and its contractions are dependent on extracellular Ca2+. Adding serotonin (5-hydroxytryptamine, 5-HT) or a membrane-permeable analog of cyclic adenosine monophosphate (cAMP) to the extracellular bath increased the frequency of crop contractions. On the other hand, adding benzethonium chloride (BzCl; a chemical that mimics the effects of myosuppressins), H-89 or Rp-cAMPS (inhibitors of protein kinase A, PKA), or carbenoxolone (an inhibitor of gap junctions) reduced the frequency of the unstimulated, spontaneous and/or 5-HT-stimulated crop contractions. Adding aedeskinin III did not detectably alter crop contraction rates. In addition to pharmacological evidence of gap junctions, we demonstrated that the crop expressed several mRNAs encoding gap junctional proteins (i.e. innexins). Furthermore, we localized immunoreactivity for innexin 2 and innexin 3 to muscle and epithelial cells of the crop, respectively. Our results 1) suggest that 5-HT and myosupressins oppositely regulate contractile activity of the mosquito crop, and 2) provide the first evidence for putative roles of cAMP, PKA, and gap junctions in modulating contractile activity of the dipteran crop.


Asunto(s)
Culicidae/fisiología , Animales , Calcio/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Esófago/fisiología , Femenino , Uniones Comunicantes/fisiología , Técnicas In Vitro , Serotonina/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-27836744

RESUMEN

Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.


Asunto(s)
Aedes/genética , Regulación del Desarrollo de la Expresión Génica , Canales de Potasio de Rectificación Interna/genética , Subunidades de Proteína/genética , Fiebre Amarilla/transmisión , Aedes/crecimiento & desarrollo , Aedes/fisiología , Animales , Sangre/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Larva/genética , Potasio/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sodio/farmacología
9.
PLoS One ; 10(9): e0137084, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26325403

RESUMEN

The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides.


Asunto(s)
Aedes/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Insecticidas/farmacología , Aedes/genética , Animales , Femenino , Hemolinfa/efectos de los fármacos , Interferencia de ARN
10.
Insect Biochem Mol Biol ; 67: 59-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26079629

RESUMEN

Malpighian tubules of adult female yellow fever mosquitoes Aedes aegypti express three inward rectifier K(+) (Kir) channel subunits: AeKir1, AeKir2B and AeKir3. Here we 1) elucidate the cellular and membrane localization of these three channels in the Malpighian tubules, and 2) characterize the effects of small molecule inhibitors of AeKir1 and AeKir2B channels (VU compounds) on the transepithelial secretion of fluid and electrolytes and the electrophysiology of isolated Malpighian tubules. Using subunit-specific antibodies, we found that AeKir1 and AeKir2B localize exclusively to the basolateral membranes of stellate cells and principal cells, respectively; AeKir3 localizes within intracellular compartments of both principal and stellate cells. In isolated tubules bathed in a Ringer solution containing 34 mM K(+), the peritubular application of VU590 (10 µM), a selective inhibitor of AeKir1, inhibited transepithelial fluid secretion 120 min later. The inhibition brings rates of transepithelial KCl and fluid secretion to 54% of the control without a change in transepithelial NaCl secretion. VU590 had no effect on the basolateral membrane voltage (Vbl) of principal cells, but it significantly reduced the cell input conductance (gin) to values 63% of the control within ∼90 min. In contrast, the peritubular application of VU625 (10 µM), an inhibitor of both AeKir1 and AeKir2B, started to inhibit transepithelial fluid secretion as early as 60 min later. At 120 min after treatment, VU625 was more efficacious than VU590, inhibiting transepithelial KCl and fluid secretion to ∼35% of the control without a change in transepithelial NaCl secretion. Moreover, VU625 caused the Vbl and gin of principal cells to respectively drop to values 62% and 56% of the control values within only ∼30 min. Comparing the effects of VU590 with those of VU625 allowed us to estimate that AeKir1 and AeKir2B respectively contribute to 46% and 20% of the transepithelial K(+) secretion when the tubules are bathed in a Ringer solution containing 34 mM K(+). Thus, we uncover an important role of AeKir1 and stellate cells in transepithelial K(+) transport under conditions of peritubular K(+) challenge. The physiological role of AeKir3 in intracellular membranes of both stellate and principal cells remains to be determined.


Asunto(s)
Aedes/metabolismo , Túbulos de Malpighi/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Aedes/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Femenino , Compuestos Heterocíclicos con 1 Anillo/farmacología , Túbulos de Malpighi/efectos de los fármacos , Potenciales de la Membrana , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Cloruro de Potasio/metabolismo , Cloruro de Sodio/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-25585357

RESUMEN

Gap junctions (GJ) mediate direct intercellular communication by forming channels through which certain small molecules and/or ions can pass. Connexins, the proteins that form vertebrate GJ, are well studied and known to contribute to neuronal, muscular and epithelial physiology. Innexins, the GJ proteins of insects, have only recently received much investigative attention and many of their physiological roles remain to be determined. Here we characterize the molecular expression of six innexin (Inx) genes in the yellow fever mosquito Aedes aegypti (AeInx1, AeInx2, AeInx3, AeInx4, AeInx7, and AeInx8) and the immunochemical expression of one innexin protein, AeInx3, in the alimentary canal. We detected the expression of no less than four innexin genes in each mosquito life stage (larva, pupa, adult) and tissue/body region from adult males and females (midgut, Malpighian tubules, hindgut, head, carcass, gonads), suggesting a remarkable potential molecular diversity of GJ in mosquitoes. Moreover, the expression patterns of some innexins were life stage and/or tissue specific, suggestive of potential functional specializations. Cloning of the four full-length cDNAs expressed in the Malpighian tubules of adult females (AeInx1, AeInx2, AeInx3, and AeInx7) revealed evidence for 1) alternative splicing of AeInx1 and AeInx3 transcripts, and 2) putative N-glycosylation of AeInx3 and AeInx7. Finally, immunohistochemistry of AeInx3 in the alimentary canal of larval and adult female mosquitoes confirmed localization of this innexin to the intercellular regions of Malpighian tubule and hindgut epithelial cells, suggesting that it is an important component of GJ in these tissues.


Asunto(s)
Aedes/metabolismo , Uniones Comunicantes/metabolismo , Proteínas de Insectos/metabolismo , Aedes/genética , Aedes/crecimiento & desarrollo , Aedes/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Datos de Secuencia Molecular , Especificidad de Órganos
12.
Gen Comp Endocrinol ; 203: 43-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24316302

RESUMEN

Adult female mosquitoes require a blood meal from a vertebrate host to successfully reproduce. During a single blood feeding, a female may ingest more than the equivalent of her own body mass, resulting in an acute stress to osmotic and ionic homeostasis. In response to this stress, the renal (Malpighian) tubules mediate a rapid diuresis that commences as soon as blood is ingested. The diuresis is regulated by neuropeptides (e.g., kinins, calcitonin-like peptide) that act on receptors in the Malpighian tubule epithelium. Interestingly, the expression of these receptors is discontinuous throughout the epithelium, which raises the question as to how Malpighian tubules mount such a rapid and synchronized response to neuropeptide stimulation. Here we propose a hypothesis that gap junctions functionally couple the epithelial cells of Malpighian tubules, resulting in a coordinated physiological response to the binding of neuropeptides. We review recent, relevant literature on the electrophysiology, physiology, and molecular biology of mosquito Malpighian tubules that indicate the presence of gap junctions in the epithelium. We also provide new physiological and immunochemical data that are consistent with the proposed hypothesis.


Asunto(s)
Aedes/metabolismo , Diuresis/fisiología , Uniones Comunicantes/metabolismo , Túbulos de Malpighi/metabolismo , Neuropéptidos/metabolismo , Aedes/citología , Animales , Comunicación Celular/fisiología , Diuréticos , Túbulos de Malpighi/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...