Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31316686

RESUMEN

We present a curriculum description, an initial student outcome investigation, and sample scientific results for a representative Course-Based Undergraduate Research Experience (CURE) that is part of the "Undergraduates Phenotyping Arabidopsis Knockouts" (unPAK) network. CUREs in the unPAK network characterize quantitative phenotypes of the model plant Arabidopsis from across environments to uncover connections between genotype and phenotype. Students in unPAK CUREs grow plants in a replicated block design and make quantitative measurements throughout the semester. This CURE enables students to answer plant science questions that draw from fields such as environmental science, genetics, ecology, and evolution. Findings indicate that this experience provides students with opportunities to make relevant scientific discoveries. Eighty percent of student datasets produced from the CURE met criteria for inclusion in the project database, indicative of student learning in data collection and analysis of quantitative plant traits. Student datasets uncovered novel effects of mutation on plant form. In addition, students' science self-efficacy increased as a result of course participation, and faculty feedback on course implementation was positive. We present unPAK as a new network that supports CUREs and research experiences focused on collecting biological data made publicly available to the scientific community. The unPAK CUREs can be tailored to address instructor interests or pedagogical needs while involving students in research investigating quantitative plant phenotypes.

2.
Plant J ; 100(1): 199-211, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31155775

RESUMEN

Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.


Asunto(s)
Arabidopsis/genética , Mutagénesis Insercional/métodos , Mutación , Fenómica/métodos , ADN Bacteriano/genética , Ambiente , Variación Genética , Genómica/métodos , Fenotipo , Plantas Modificadas Genéticamente
3.
Ecol Evol ; 4(15): 2979-90, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25247056

RESUMEN

Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

4.
Am Nat ; 183(4): 453-67, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24642491

RESUMEN

Understanding the evolution of reaction norms remains a major challenge in ecology and evolution. Investigating evolutionary divergence in reaction norm shapes between populations and closely related species is one approach to providing insights. Here we use a meta-analytic approach to compare divergence in reaction norms of closely related species or populations of animals and plants across types of traits and environments. We quantified mean-standardized differences in overall trait means (Offset) and reaction norm shape (including both Slope and Curvature). These analyses revealed that differences in shape (Slope and Curvature together) were generally greater than differences in Offset. Additionally, differences in Curvature were generally greater than differences in Slope. The type of taxon contrast (species vs. population), trait, organism, and the type and novelty of environments all contributed to the best-fitting models, especially for Offset, Curvature, and the total differences (Total) between reaction norms. Congeneric species had greater differences in reaction norms than populations, and novel environmental conditions increased the differences in reaction norms between populations or species. These results show that evolutionary divergence of curvature is common and should be considered an important aspect of plasticity, together with slope. Biological details about traits and environments, including cryptic variation expressed in novel environmental conditions, may be critical to understanding how reaction norms evolve in novel and rapidly changing environments.


Asunto(s)
Evolución Biológica , Interacción Gen-Ambiente , Modelos Genéticos , Animales
5.
Ann Bot ; 113(3): 513-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24363335

RESUMEN

BACKGROUND AND AIMS: Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. METHODS: To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. KEY RESULTS: Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. CONCLUSIONS: The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.


Asunto(s)
Acer/fisiología , Interacciones Huésped-Patógeno , Micorrizas/fisiología , Raíces de Plantas/fisiología , Quercus/fisiología , Acer/microbiología , Biomasa , Calor , Fenotipo , Raíces de Plantas/microbiología , Quercus/microbiología , Plantones/microbiología , Plantones/fisiología , Suelo , Especificidad de la Especie , Árboles
7.
Ann N Y Acad Sci ; 1133: 44-66, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18559815

RESUMEN

Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic basis of plasticity. In this vein, microbial work is especially illuminating and has three additional strengths. First, information about the machinery underlying plasticity--such as structural and regulatory genes, sensory proteins, and biochemical pathways--helps link population-level studies with underlying physiological and genetic mechanisms. Second, microbial studies involve many generations, large populations, and replication. Finally, empirical estimation of key parameters (e.g., mutation rates) is tractable. Together, these allow for rigorous investigation of gene interactions, drift, mutation, and selection--all potential factors influencing the maintenance or loss of inducible traits along with phenotypic and plasticity costs. Messages emerging from microbial work can guide future efforts to understand the evolution of plastic traits in diverse organisms.


Asunto(s)
Variación Genética/fisiología , Modelos Genéticos , Fenotipo , Selección Genética , Adaptación Fisiológica/genética , Animales , Evolución Molecular Dirigida , Cadena Alimentaria , Genoma , Modelos Biológicos , Conducta Predatoria/fisiología
8.
New Phytol ; 166(1): 129-39, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15760357

RESUMEN

Earlier flowering is triggered by vernalization in some but not all Arabidopsis ecotypes, often reflecting allelic variation at the FRIGIDA (FRI) locus. Using a recombinant inbred (RI) population polymorphic at FRI, we examined fitness consequences of variation for plasticity. Flowering and fitness were scored for 68 RI genotypes following full and partial vernalization treatments. Within-environment and mixed-model anovas estimated variance components for a genotype effect and a G x E term, respectively. Selection analyses examined whether delayed bolting increases fitness; a plasticity costs analysis asked whether increased plasticity lowers fitness. We also explored whether trait QTL had environment-specific effects, colocated in the immediate vicinity of FRI, or overlapped with fitness QTL. Selection may favor fri alleles and constitutive early flowering, especially in conditions that only partially vernalize plants. Plasticity costs, detected only after partial vernalization and only marginally significant, were nonetheless consistent with FRI-FLC function. We discuss how information about QTL with environment-specific effects, fitness QTL, and knowledge about plasticity genes can improve interpretation of selection or plasticity cost analyses.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/genética , Ambiente , Flores/genética , Ligamiento Genético , Genotipo , Endogamia , Fenotipo , Plantas Modificadas Genéticamente , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Factores de Tiempo
9.
Integr Comp Biol ; 45(3): 475-85, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21676792

RESUMEN

The plasticity of any given trait, which has a genetic basis and which may or may not be adaptive, can intensify or attenuate evolved responses, and can itself evolve in response to selection depending on the scale of spatial or temporal heterogeneity. To investigate the complex function and evolution of plastic traits, an appealing yet challenging approach is assessing responses to artificial selection. Here, I review how artificial selection has been employed to explore four botanical research themes: (1) relationships between plastic and evolved responses to multiple stresses, (2) integration of cellular, leaf-level, and whole-plant responses to altered CO(2) concentrations, (3) photomorphogenic and photoperiodic development, both mediated by phytochrome photoreceptors, and (4) the evolution of the pest-induced myrosinase-glucosinolate system in cruciferous plants. These diverse topics are unified not only because they have been studied using artificial selection experiments, but also because they have considered variability in multiple traits affected by multiple factors in the external environment. Limitations of such research include a dearth of long-term studies; a surprising but often logistically necessary omission of control or replicate lines; and numerous issues relating to assessing impacts of inbreeding and drift. In addition to discussing options for circumventing such limitations, I draw attention to strategies for integrating the results of artificial selection studies with progress in functional and evolutionary genomics.

10.
Evolution ; 53(6): 1704-1713, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28565445

RESUMEN

To understand natural selection we need to integrate its measure across environments. We present a method for measuring phenotypic selection that combines the potential for both environmental variation and phenotypic plasticity. The method uses path analysis and a measure of selection that is analogous to selection on breeding values. For individuals growing in alternative environments, paths are created that represent potential changes in the environment. The probabilities for these changes are then multiplied by the path coefficients to calculate selection coefficients. Selection on plasticity is measured as the difference in selection within each environment. We illustrate these methods using data on selection in an experimental population of Arabidopsis thaliana. Individuals from 36 families were grown in one of four environments, a factorial combination of shaded/open and early/late shading. For final height of the inflorescence, there was positive selection in both the open and shaded environments and negative selection on plasticity of height. For bolting time, there was also positive selection in both environments, but no selection on plasticity. We show how to use this information to examine how selection would change with changes in environmental frequencies and their transition probabilities. These methods can be expanded to encompass continuous traits and continuous environments as well as other complexities of natural selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...