Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetologia ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811417

RESUMEN

In type 1 diabetes, the insulin-producing beta cells of the pancreas are destroyed through the activity of autoreactive T cells. In addition to strong and well-documented HLA class II risk haplotypes, type 1 diabetes is associated with noncoding polymorphisms within the insulin gene locus. Furthermore, autoantibody prevalence data and murine studies implicate insulin as a crucial autoantigen for the disease. Studies identify secretory granules, where proinsulin is processed into mature insulin, stored and released in response to glucose stimulation, as a source of antigenic epitopes and neoepitopes. In this review, we integrate established concepts, including the role that susceptible HLA and thymic selection of the T cell repertoire play in setting the stage for autoimmunity, with emerging insights about beta cell and insulin secretory granule biology. In particular, the acidic, peptide-rich environment of secretory granules combined with its array of enzymes generates a distinct proteome that is unique to functional beta cells. These factors converge to generate non-templated peptide sequences that are recognised by autoreactive T cells. Although unanswered questions remain, formation and presentation of these epitopes and the resulting immune responses appear to be key aspects of disease initiation. In addition, these pathways may represent important opportunities for therapeutic intervention.

2.
Diabetes ; 73(5): 728-742, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387030

RESUMEN

The ß-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Linfocitos T CD4-Positivos , Diabetes Mellitus Tipo 1/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Islotes Pancreáticos/metabolismo , Péptidos
3.
Diabetes ; 73(5): 743-750, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295386

RESUMEN

Hybrid insulin peptides (HIPs) formed through covalent cross-linking of proinsulin fragments to secretory granule peptides are detectable within murine and human islets. The 2.5HIP (C-peptide-chromogranin A [CgA] HIP), recognized by the diabetogenic BDC-2.5 clone, is a major autoantigen in the nonobese diabetic mouse. However, the relevance of this epitope in human disease is currently unclear. A recent study probed T-cell reactivity toward HIPs in patients with type 1 diabetes, documenting responses in one-third of the patients and isolating several HIP-reactive T-cell clones. In this study, we isolated a novel T-cell clone and showed that it responds vigorously to the human equivalent of the 2.5HIP (designated HIP9). Although the responding patient carried the risk-associated DRB1*04:01/DQ8 haplotype, the response was restricted by DRB1*11:03 (DR11). HLA class II tetramer staining revealed higher frequencies of HIP9-reactive T cells in individuals with diabetes than in control participants. Furthermore, in DR11+ participants carrying the DRB4 allele, HIP9-reactive T-cell frequencies were higher than observed frequencies for the immunodominant proinsulin 9-28 epitope. Finally, there was a negative correlation between HIP9-reactive T-cell frequency and age at diagnosis. These results provide direct evidence that this C-peptide-CgA HIP is relevant in human type 1 diabetes and suggest a mechanism by which nonrisk HLA haplotypes may contribute to the development of ß-cell autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Animales , Ratones , Linfocitos T , Proinsulina , Péptido C , Cromogranina A , Péptidos , Insulina Regular Humana , Epítopos , Fragmentos de Péptidos
4.
Cells ; 12(9)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37174719

RESUMEN

BACKGROUND AND AIMS: Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS: In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS: Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION: The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trampas Extracelulares , Humanos , Trampas Extracelulares/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteoma/metabolismo , Proteómica , Neutrófilos/metabolismo
5.
Methods Mol Biol ; 2596: 231-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36378443

RESUMEN

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. In this chapter, we describe our routine two-dimensional difference gel electrophoresis (2D-DIGE) workflow for analysis of mouse liver tissue in physiological conditions, as well as of mouse HCC. 2D-DIGE still constitutes a valuable comparative proteomics technique, not only providing information on global protein expression in a sample but also on potential posttranslational protein modifications, occurrence of protein degradation fragments, and the existence of protein isoforms. Thus, 2D-DIGE analysis provides highly complementary data to non-gel-based shotgun mass spectrometry (MS) methods (e.g., liquid chromatography (LC)-MS/MS)-allowing, for example, identification of novel protein biomarkers for HCC or increasing insights into the molecular mechanisms underlying hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Electroforesis Bidimensional Diferencial en Gel , Carcinoma Hepatocelular/metabolismo , Espectrometría de Masas en Tándem , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Neoplasias Hepáticas/metabolismo , Isoformas de Proteínas , Electroforesis en Gel Bidimensional/métodos
6.
Nat Commun ; 13(1): 1870, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388005

RESUMEN

Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.


Asunto(s)
Diabetes Mellitus Tipo 1 , Glucoquinasa , Animales , Citrulinación , Diabetes Mellitus Tipo 1/metabolismo , Glucoquinasa/genética , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos NOD
7.
Diabetes ; 70(12): 2879-2891, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561224

RESUMEN

In type 1 diabetes, autoimmune ß-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citrulinación/fisiología , Diabetes Mellitus Tipo 1/inmunología , Chaperón BiP del Retículo Endoplásmico/inmunología , Epítopos de Linfocito T/metabolismo , Adolescente , Adulto , Animales , Niño , Citrulinación/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Chaperón BiP del Retículo Endoplásmico/química , Chaperón BiP del Retículo Endoplásmico/metabolismo , Epítopos de Linfocito T/química , Femenino , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Procesamiento Proteico-Postraduccional/inmunología , Procesamiento Proteico-Postraduccional/fisiología , Adulto Joven
8.
J Proteome Res ; 20(2): 1405-1414, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372785

RESUMEN

Enzymatic deamidation, the conversion of glutamine (Gln) into glutamic acid (Glu) residues, mediated by tissue transglutaminase enzymes, can provoke autoimmunity by generating altered self-epitopes, a process well-known in celiac disease and more recently also described in type 1 diabetes (T1D). To identify deamidated proteins, liquid chromatography-tandem mass spectrometry is the method of choice. However, as nonenzymatic deamidations on asparagine (Asn) and to a minor extent on Gln are frequently induced in vitro during proteomics sample preparation, the accurate detection of in vivo deamidation can be hampered. Here we report on the optimization of a method to reduce in vitro generated deamidation by 70% using improved trypsin digestion conditions (90 min/pH 8). We also point to the critical importance of manual inspection of MS2 spectra, considering that only 55% of the high quality peptides with Gln deamidation were assigned correctly using an automated search algorithm. As proof of principal, using these criteria, we showed a significant increase in levels of both Asn and Gln deamidation in cytokine-exposed murine MIN6 ß-cells, paralleled by an increase in tissue transglutaminase activity. These findings add evidence to the hypothesis that deamidation is occurring in stressed ß-cell proteins and can be involved in the autoimmune process in T1D.


Asunto(s)
Citocinas , Espectrometría de Masas en Tándem , Amidas , Animales , Asparagina , Cromatografía Liquida , Digestión , Ratones , Péptidos
9.
Diabetes ; 70(2): 516-528, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203696

RESUMEN

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated glucose-regulated protein 78, and reduced spontaneous neutrophil extracellular trap formation of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of interferon-γ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Ornitina/análogos & derivados , Páncreas/efectos de los fármacos , Desiminasas de la Arginina Proteica/antagonistas & inhibidores , Animales , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Ratones , Ratones Endogámicos NOD , Ornitina/farmacología , Páncreas/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo
10.
Diabetes ; 67(11): 2337-2348, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30348823

RESUMEN

The ß-cell has become recognized as a central player in the pathogenesis of type 1 diabetes with the generation of neoantigens as potential triggers for breaking immune tolerance. We report that posttranslationally modified glucose-regulated protein 78 (GRP78) is a novel autoantigen in human type 1 diabetes. When human islets were exposed to inflammatory stress induced by interleukin-1ß, tumor necrosis factor-α, and interferon-γ, arginine residue R510 within GRP78 was converted into citrulline, as evidenced by liquid chromatography-tandem mass spectrometry. This conversion, known as citrullination, led to the generation of neoepitopes, which effectively could be presented by HLA-DRB1*04:01 molecules. With the use of HLA-DRB1*04:01 tetramers and ELISA techniques, we demonstrate enhanced antigenicity of citrullinated GRP78 with significantly increased CD4+ T-cell responses and autoantibody titers in patients with type 1 diabetes compared with healthy control subjects. Of note, patients with type 1 diabetes had a predominantly higher percentage of central memory cells and a lower percentage of effector memory cells directed against citrullinated GRP78 compared with the native epitope. These results strongly suggest that citrullination of ß-cell proteins, exemplified here by the citrullination of GRP78, contributes to loss of self-tolerance toward ß-cells in human type 1 diabetes, indicating that ß-cells actively participate in their own demise.


Asunto(s)
Autoantígenos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamación/metabolismo , Islotes Pancreáticos/metabolismo , Autoantígenos/inmunología , Citrulinación , Citocinas/farmacología , Diabetes Mellitus Tipo 1/inmunología , Chaperón BiP del Retículo Endoplásmico , Humanos , Inflamación/inmunología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...