Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(6): 2583-2593, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35236956

RESUMEN

Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.


Asunto(s)
Complejo Nuclear Basolateral , Dronabinol , Ratas , Animales , Masculino , Dronabinol/efectos adversos , Sistema Hipotálamo-Hipofisario , Transcriptoma , Sistema Hipófiso-Suprarrenal , Recompensa
2.
Biol Psychiatry ; 92(2): 127-138, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34895699

RESUMEN

BACKGROUND: Cannabis remains one of the most widely abused drugs during pregnancy. In utero exposure to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC), can result in long-term neuropsychiatric risk for the progeny. This study investigated epigenetic signatures underlying these enduring consequences. METHODS: Rat dams were exposed daily to THC (0.15 mg/kg) during pregnancy, and adult male offspring were examined for reward and depressive-like behavioral endophenotypes. Using unbiased sequencing approaches, we explored transcriptional and epigenetic profiles in the nucleus accumbens (NAc), a brain area central to reward and emotional processing. An in vitro CRISPR (clustered regularly interspaced short palindromic repeats) activation model coupled with RNA sequencing was also applied to study specific consequences of epigenetic dysregulation, and altered molecular signatures were compared with human major depressive disorder transcriptome datasets. RESULTS: Prenatal THC exposure induced increased motivation for food, heightened learned helplessness and anhedonia, and altered stress sensitivity. We identified a robust increase specific to males in the expression of Kmt2a (histone-lysine N-methyltransferase 2A) that targets H3K4 (lysine 4 on histone H3) in cellular chromatin. Normalizing Kmt2a in the NAc rescued the motivational phenotype of prenatally THC-exposed animals. Comparison of RNA- and H3K4me3-sequencing datasets from the NAc of rat offspring with the in vitro model of Kmt2a upregulation revealed overlapping, significant disturbances in pathways that mediate synaptic plasticity. Similar transcriptional alterations were detected in human major depressive disorder. CONCLUSIONS: These studies provide direct evidence for the persistent effects of prenatal cannabis exposure on transcriptional and epigenetic deviations in the NAc via Kmt2a dysregulation and associated psychiatric vulnerability.


Asunto(s)
Cannabis , Trastorno Depresivo Mayor , Animales , Trastorno Depresivo Mayor/metabolismo , Dronabinol/farmacología , Epigénesis Genética , Femenino , Masculino , Motivación , Núcleo Accumbens , Embarazo , Ratas
3.
Nat Commun ; 11(1): 4634, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929078

RESUMEN

The current opioid epidemic necessitates a better understanding of human addiction neurobiology to develop efficacious treatment approaches. Here, we perform genome-wide assessment of chromatin accessibility of the human striatum in heroin users and matched controls. Our study reveals distinct neuronal and non-neuronal epigenetic signatures, and identifies a locus in the proximity of the gene encoding tyrosine kinase FYN as the most affected region in neurons. FYN expression, kinase activity and the phosphorylation of its target Tau are increased by heroin use in the post-mortem human striatum, as well as in rats trained to self-administer heroin and primary striatal neurons treated with chronic morphine in vitro. Pharmacological or genetic manipulation of FYN activity significantly attenuates heroin self-administration and responding for drug-paired cues in rodents. Our findings suggest that striatal FYN is an important driver of heroin-related neurodegenerative-like pathology and drug-taking behavior, making FYN a promising therapeutic target for heroin use disorder.


Asunto(s)
Cromatina/metabolismo , Cuerpo Estriado/enzimología , Dependencia de Heroína/enzimología , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Animales , Secuencia de Bases , Conducta Animal/efectos de los fármacos , Señales (Psicología) , Genoma , Células HEK293 , Heroína/efectos adversos , Humanos , Masculino , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Ratas Long-Evans , Autoadministración , Transcripción Genética/efectos de los fármacos , Proteínas tau/metabolismo
4.
Biol Psychiatry ; 81(7): 585-594, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27863698

RESUMEN

BACKGROUND: Opiate abuse and overdose reached epidemic levels in the United States. However, despite significant advances in animal and in vitro models, little knowledge has been directly accrued regarding the neurobiology of the opiate-addicted human brain. METHODS: We used postmortem human brain specimens from a homogeneous European Caucasian population of heroin users for transcriptional and epigenetic profiling, as well as direct assessment of chromatin accessibility in the striatum, a brain region central to reward and emotion. A rat heroin self-administration model was used to obtain translational molecular and behavioral insights. RESULTS: Our transcriptome approach revealed marked impairments related to glutamatergic neurotransmission and chromatin remodeling in the human striatum. A series of biochemical experiments tracked the specific location of the epigenetic disturbances to hyperacetylation of lysine 27 of histone H3, showing dynamic correlations with heroin use history and acute opiate toxicology. Targeted investigation of GRIA1, a glutamatergic gene implicated in drug-seeking behavior, verified the increased enrichment of lysine-27 acetylated histone H3 at discrete loci, accompanied by enhanced chromatin accessibility at hyperacetylated regions in the gene body. Analogous epigenetic impairments were detected in the striatum of heroin self-administering rats. Using this translational model, we showed that bromodomain inhibitor JQ1, which blocks the functional readout of acetylated lysines, reduced heroin self-administration and cue-induced drug-seeking behavior. CONCLUSIONS: Overall, our data suggest that heroin-related histone H3 hyperacetylation contributes to glutamatergic transcriptional changes that underlie addiction behavior and identify JQ1 as a promising candidate for targeted clinical interventions in heroin use disorder.


Asunto(s)
Encéfalo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Epigénesis Genética , Dependencia de Heroína/genética , Dependencia de Heroína/metabolismo , Histonas/metabolismo , Receptores AMPA/genética , Acetilación , Animales , Azepinas/administración & dosificación , Encéfalo/efectos de los fármacos , Ensamble y Desensamble de Cromatina , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Epigenómica , Perfilación de la Expresión Génica , Humanos , Masculino , Ratas , Ratas Long-Evans , Receptores AMPA/metabolismo , Autoadministración , Triazoles/administración & dosificación , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...