Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(27): 32579-32589, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34196522

RESUMEN

A perpendicularly magnetized spin injector with a high Curie temperature is a prerequisite for developing spin optoelectronic devices on two-dimensional (2D) materials working at room temperature (RT) with zero applied magnetic field. Here, we report the growth of Ta/CoFeB/MgO structures with large perpendicular magnetic anisotropy (PMA) on full-coverage monolayer (ML) molybdenum disulfide (MoS2). A large perpendicular interface anisotropy energy of 0.975 mJ/m2 has been obtained at the CoFeB/MgO interface, comparable to that observed in magnetic tunnel junction systems. It is found that the insertion of MgO between the ferromagnetic (FM) metal and the 2D material can effectively prevent the diffusion of the FM atoms into the 2D material. Moreover, the MoS2 ML favors a MgO(001) texture and plays a critical role in establishing the large PMA. First-principles calculations on a similar Fe/MgO/MoS2 structure reveal that the MgO thickness can modify the MoS2 band structure, from a direct band gap with 3ML-MgO to an indirect band gap with 7 ML-MgO. The proximity effect induced by Fe results in splitting of 10 meV in the valence band at the Γ point for the 3ML-MgO structure, while it is negligible for the 7 ML-MgO structure. These results pave the way to develop RT spin optoelectronic devices based on 2D transition-metal dichalcogenide materials.

2.
ACS Appl Mater Interfaces ; 8(11): 7553-63, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26939641

RESUMEN

Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA