Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 143(19): 3632-3637, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27702788

RESUMEN

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.


Asunto(s)
Hibridación in Situ/métodos , ARN Mensajero/metabolismo , Animales , Drosophila , Embrión no Mamífero/metabolismo , Humanos , Pez Cebra
2.
ACS Nano ; 8(4): 3251-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24720462

RESUMEN

Kinetically controlled isothermal growth is fundamental to biological development, yet it remains challenging to rationally design molecular systems that self-assemble isothermally into complex geometries via prescribed assembly and disassembly pathways. By exploiting the programmable chemistry of base pairing, sophisticated spatial and temporal control have been demonstrated in DNA self-assembly, but largely as separate pursuits. By integrating temporal with spatial control, here we demonstrate the "developmental" self-assembly of a DNA tetrahedron, where a prescriptive molecular program orchestrates the kinetic pathways by which DNA molecules isothermally self-assemble into a well-defined three-dimensional wireframe geometry. In this reaction, nine DNA reactants initially coexist metastably, but upon catalysis by a DNA initiator molecule, navigate 24 individually characterizable intermediate states via prescribed assembly pathways, organized both in series and in parallel, to arrive at the tetrahedral final product. In contrast to previous work on dynamic DNA nanotechnology, this developmental program coordinates growth of ringed substructures into a three-dimensional wireframe superstructure, taking a step toward the goal of kinetically controlled isothermal growth of complex three-dimensional geometries.


Asunto(s)
ADN/química , Nanotecnología/métodos , Conformación de Ácido Nucleico , Cinética , Modelos Moleculares , Nanoestructuras/química
3.
Nature ; 451(7176): 318-22, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-18202654

RESUMEN

In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self-assemble into prescribed target structures, rather than on engineering transient system dynamics. To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self-assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization, triggered self-assembly and molecular computation. Here, we program diverse molecular self-assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross-catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.


Asunto(s)
Simulación por Computador , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Biopolímeros/química , Biopolímeros/metabolismo , Catálisis , ADN Concatenado/química , ADN Concatenado/metabolismo , Dendrímeros/química , Dendrímeros/metabolismo , Marcha , Cinética , Modelos Biológicos , Procesos Estocásticos , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...