Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234946

RESUMEN

This study reports a facile approach for constructing low-cost and remarkable electroactivity iron vanadate (Fe-V-O) semiconductor material to be used as a photoelectrochemical sensor for dopamine detection. The structure and morphology of the iron vanadate obtained by the Successive Ionic Adsorption and Reaction process were critically characterized, and the photoelectrochemical characterization showed a high photoelectroactivity of the photoanode in visible light irradiation. Under best conditions, dopamine was detected by chronoamperometry at +0.35 V vs. Ag/AgCl, achieving two linear response ranges (between 1.21 and 30.32 µmol L-1, and between 30.32 and 72.77 µmol L-1). The limits of detection and quantification were 0.34 and 1.12 µmol L-1, respectively. Besides, the accuracy of the proposed electrode was assessed by determining dopamine in artificial cerebrospinal fluid, obtaining recovery values ranging from 98.7 to 102.4%. The selectivity was also evaluated by dopamine detection against several interferent species, demonstrating good precision and promising application for the proposed method. Furthermore, DFT-based electronic structure calculations were also conducted to help the interpretation. The dominant dopamine species were determined according to the experimental conditions, and their interaction with the iron vanadate photoanode was proposed. The improved light-induced DOP detection was likewise evaluated regarding the charge transfer process.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Biosensibles/métodos , Dopamina/química , Técnicas Electroquímicas/métodos , Electrodos , Hierro , Luz , Límite de Detección , Vanadatos
2.
Environ Sci Pollut Res Int ; 29(55): 83698-83710, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35771329

RESUMEN

Up to 90% of glyphosate was removed in 40 min by a 2:1 Mg2Al-layered double oxide (LDO) at pH 10, and the adsorption kinetics fitted a pseudo-second-order law. The adsorption isotherms were type L, and the Langmuir model best fitted the experimental data, with qmax of 158.22 µg/mg at 25 °C. The intraparticle diffusion model suggested that the adsorption process is dependent on the thickness and formation of the film at the solution/solid interface. The XRD results excluded the intercalation of glyphosate anions, and FTIR along with solid-state 13C and 31P MAS NMR confirmed that the glyphosate anions interact through the carboxylate and/or phosphonate moieties, both in end-on and side-on modes to the LDO surface. Glyphosate removal was also investigated in the presence of different anionic species, and simultaneous adsorption showed that carbonate and phosphate ions strongly influence glyphosate removal.


Asunto(s)
Óxidos , Agua , Adsorción , Óxidos/química , Cinética , Termodinámica , Aniones , Concentración de Iones de Hidrógeno , Soluciones , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA