Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11575, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773273

RESUMEN

Leishmaniasis is a disease caused by a protozoan of the genus Leishmania, affecting millions of people, mainly in tropical countries, due to poor social conditions and low economic development. First-line chemotherapeutic agents involve highly toxic pentavalent antimonials, while treatment failure is mainly due to the emergence of drug-resistant strains. Leishmania arginase (ARG) enzyme is vital in pathogenicity and contributes to a higher infection rate, thus representing a potential drug target. This study helps in designing ARG inhibitors for the treatment of leishmaniasis. Py-CoMFA (3D-QSAR) models were constructed using 34 inhibitors from different chemical classes against ARG from L. (L.) amazonensis (LaARG). The 3D-QSAR predictions showed an excellent correlation between experimental and calculated pIC50 values. The molecular docking study identified the favorable hydrophobicity contribution of phenyl and cyclohexyl groups as substituents in the enzyme allosteric site. Molecular dynamics simulations of selected protein-ligand complexes were conducted to understand derivatives' interaction modes and affinity in both active and allosteric sites. Two cinnamide compounds, 7g and 7k, were identified, with similar structures to the reference 4h allosteric site inhibitor. These compounds can guide the development of more effective arginase inhibitors as potential antileishmanial drugs.


Asunto(s)
Arginasa , Inhibidores Enzimáticos , Leishmania , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Arginasa/antagonistas & inhibidores , Arginasa/química , Arginasa/metabolismo , Leishmania/enzimología , Leishmania/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Relación Estructura-Actividad Cuantitativa , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Sitio Alostérico , Antiprotozoarios/farmacología , Antiprotozoarios/química , Dominio Catalítico
2.
Sci Rep ; 14(1): 8620, 2024 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616188

RESUMEN

Scientists and researchers have been searching for drugs targeting the main protease (Mpro) of SARS-CoV-2, which is crucial for virus replication. This study employed a virtual screening based on molecular docking to identify benzoylguanidines from an in-house chemical library that can inhibit Mpro on the active site and three allosteric sites. Molecular docking was performed on the LaSMMed Chemical Library using 88 benzoylguanidine compounds. Based on their RMSD values and conserved pose, three potential inhibitors (BZG1, BZG2, and BZG3) were selected. These results indicate that BZG1 and BZG3 may bind to the active site, while BZG2 may bind to allosteric sites. Molecular dynamics data suggest that BZG2 selectively targets allosteric site 3. In vitro tests were performed to measure the proteolytic activity of rMpro. The tests showed that BZG2 has uncompetitive inhibitory activity, with an IC50 value of 77 µM. These findings suggest that benzoylguanidines possess potential as Mpro inhibitors and pave the way towards combating SARS-Cov-2 effectively.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Guanidina , Simulación del Acoplamiento Molecular , Guanidinas/farmacología , Pruebas de Enzimas , Bibliotecas de Moléculas Pequeñas
3.
Curr Med Chem ; 31(29): 4703-4724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375848

RESUMEN

Tuberculosis (TB) remains a primary global health concern, necessitating the discovery and development of new anti-TB drugs, mainly to combat drug-resistant strains. In this context, thiourea derivatives have emerged as promising candidates in TB drug discovery due to their diverse chemical structures and pharmacological properties. This review aimed to explore this potential, identifying and exploring molecular targets for thiourea derivatives in Mycobacterium tuberculosis (Mtb) and the potential application of virtual screening techniques in drug discovery. We have compiled a comprehensive list of possible molecular targets of thiourea derivatives in Mtb. The enzymes are primarily involved in the biosynthesis of various cell wall components, including mycolic acids, peptidoglycans, and arabinans, or targets in the branched-chain amino acid biosynthesis (BCAA) pathway and detoxification mechanisms. We discuss the potential of these targets as critical constituents for the design of novel anti-TB drugs. Besides, we highlight the opportunities that virtual screening methodologies present in identifying potential thiourea derivatives that can interact with these molecular targets. The presented findings contribute to the ongoing efforts in TB drug discovery and lay the foundation for further research in designing and developing more effective treatments against this devastating disease.


Asunto(s)
Antituberculosos , Descubrimiento de Drogas , Mycobacterium tuberculosis , Tiourea , Tiourea/química , Tiourea/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Antituberculosos/farmacología , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/diagnóstico , Evaluación Preclínica de Medicamentos
4.
Pathogens ; 12(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623972

RESUMEN

For decades, only two nitroheterocyclic drugs have been used as therapeutic agents for Chagas disease. However, these drugs present limited effectiveness during the chronic phase, possess unfavorable pharmacokinetic properties, and induce severe adverse effects, resulting in low treatment adherence. A previous study reported that N-(cyclohexylcarbamothioyl) benzamide (BTU-1), N-(tert-butylcarbamothioyl) benzamide (BTU-2), and (4-bromo-N-(3-nitrophenyl) carbamothioyl benzamide (BTU-3) present selective antiprotozoal activity against all developmental forms of Trypanosoma cruzi Y strain. In this study, we investigated the mechanism of action of these compounds through microscopy and biochemical analyses. Transmission electron microscopy analysis showed nuclear disorganization, changes in the plasma membrane with the appearance of blebs and extracellular arrangements, intense vacuolization, mitochondrial swelling, and formation of myelin-like structures. Biochemical results showed changes in the mitochondrial membrane potential, reactive oxygen species content, lipid peroxidation, and plasma membrane fluidity. In addition, the formation of autophagic vacuoles was observed. These findings indicate that BTU-1, BTU-2, and BTU-3 induced profound morphological, ultrastructural, and biochemical alterations in epimastigote forms, triggering an autophagic-dependent cell death pathway.

5.
Curr Drug Targets ; 24(10): 781-789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469152

RESUMEN

Some diseases caused by trypanosomatid parasites, like Leishmaniasis, Chagas Disease, and Human African Trypanosomiasis (HTA), are challenging to manage, mainly concerning pharmacological therapy because they are associated with vulnerable populations. Unfortunately, there is a lack of significant investments in the search for new drugs. Therefore, one of the strategies to aid the discovery of new drugs is to identify and inhibit molecular targets essential to the parasite's survival, such as the proteasome, which degrades most proteins in the parasite cells. Our study has presented several proteasome inhibitors with various pharmacophoric cores, and two of them, 5, and 13, have stood out in the clinical phase of treatment for leishmaniasis.


Asunto(s)
Enfermedad de Chagas , Leishmaniasis , Tripanosomiasis Africana , Animales , Humanos , Complejo de la Endopetidasa Proteasomal , Tripanosomiasis Africana/tratamiento farmacológico , Enfermedad de Chagas/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico
6.
Front Microbiol ; 14: 1040671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960287

RESUMEN

Introduction: Cryptococcus neoformans is one of the leading causes of invasive fungal infections worldwide. Cryptococcal meningoencephalitis is the main challenge of antifungal therapy due to high morbidity and mortality rates, especially in low- and middle-income countries. This can be partly attributed to the lack of specific diagnosis difficulty accessing treatment, antifungal resistance and antifungal toxicity. Methods: In the present study, the effect of the synthetic thiourea derivative N-(butylcarbamothioyl) benzamide (BTU-01), alone and combined with amphotericin B (AmB), was evaluated in planktonic and sessile (biofilm) cells of C. neoformans. Results: BTU-01 alone exhibited a fungistatic activity with minimal inhibitory concentrations (MICs) ranging from 31.25 to 62.5 µg/mL for planktonic cells; and sessile MICs ranging from 125.0 to 1000.0 µg/mL. BTU-01 caused a concentration-dependent inhibitory activity on cryptococcal urease and did not interfere with plasma membrane fluidity. Molecular docking was performed on Canavalia ensiformis urease, and BTU-01 showed relevant interactions with the enzyme. The combination of BTU-01 and AmB exhibited synergistic fungicidal activity against planktonic and sessile cells of C. neoformans. Microscopic analysis of C. neoformans treated with BTU-01, alone or combined with AmB, revealed a reduction in cell and capsule sizes, changes in the morphology of planktonic cells; a significant decrease in the number of cells within the biofilm; and absence of exopolymeric matrix surrounding the sessile cells. Neither hemolytic activity nor cytotoxicity to mammalian cells was detected for BTU-01, alone or combined with AmB, at concentrations that exhibited antifungal activity. BTU-01 also displayed drug-likeness properties. Conclusion: These results indicate the potential of BTU-01, for the development of new strategies for controlling C. neoformans infections.

7.
Chem Biol Interact ; 365: 110045, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35853540

RESUMEN

We report the investigation of hydantoins and thiohydantoins derived from L and d-amino acids as inhibitors against the Canavalia ensiformis urease (CEU). The biochemical in vitro assay against CEU revealed a promising inhibitory potential for most thiohydantoins with six of them showing %I higher than the reference inhibitor thiourea (56.5%). In addition, thiohydantoin derived from l-valine, 1b, as well as the hydantoin 2d, derived from l-methionine, were identified as the most potent inhibitors with %I = 90.5 and 85.9 respectively. Enzyme kinetic studies demonstrated a mixed and uncompetitive inhibition profile for these compounds with Ki values of 0.42 mM for 1b and 0.99 mM for 2d. These kinetic parameters, obtained from traditional colorimetric assay, were strictly related to the KD values measured spectroscopically by the Saturation Transfer Difference (STD) technique for the urease complex. STD was also used to evince the moieties of the ligands responsible for the binding with the enzyme. Molecular docking studies showed that the thiohydantoin and hydantoin rings can act as a pharmacophoric group due to their binding affinity by hydrogen bonding interactions with critical amino acid residues in the enzyme active and/or allosteric site. These findings agreed with the experimental alpha values, demonstrating that 1b has affinity by free enzyme, and 2d derivative, an uncompetitive inhibitor, has great binding affinity at the allosteric site. The results for the thiohydantoin 1a, derived from d-valine, demonstrated a drastic stereochemical influence on inhibition, kinetics, and binding parameters in comparison to its enantiomer 1b.


Asunto(s)
Hidantoínas , Tiohidantoínas , Aminoácidos , Canavalia/metabolismo , Inhibidores Enzimáticos/química , Hidantoínas/farmacología , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Ureasa/química , Ureasa/metabolismo
8.
J Biomol Struct Dyn ; 40(7): 3213-3222, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33183184

RESUMEN

Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. The first-line treatment of this disease is still based on pentavalent antimonial drugs that have a high toxicity profile, which could induce parasitic resistance. Therefore, there is a critical need to discover more effective and selective novel anti-leishmanial agents. In this context, thiohydantoins are a versatile class of substances due to their simple synthesis and several biological activities. In this work, thiohydantoins 1a-l were evaluated in vitro for antileishmania activity. Among them, four derivatives (1c, 1e, 1h and 1l) showed promising IC50 values around 10 µM against promastigotes forms of Leishmania amazonensis and low cytotoxicity profile for peritoneal macrophages cells. Besides, these compounds induce oxidative stress through an increase in ROS production and the labeling of annexin-V and propidium iodide, indicating that promastigotes were undergoing a late apoptosis-like process. Additionally, molecular consensual docking analysis was carried out against two important targets to L. amazonensis: arginase and trypanothione reductase enzymes. Docking results suggest that thiohydantoin ring could be a pharmacophoric group due to its binding affinity by hydrogens bond interactions with important amino acid residues at the active site of both enzymes. These results demonstrate that compounds 1c, 1e, 1h and 1l may are promising in future advance studies.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Antiprotozoarios/química , Antiprotozoarios/farmacología , Humanos , Leishmaniasis/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Tiohidantoínas/farmacología
9.
Chem Biol Interact ; 351: 109690, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34637778

RESUMEN

The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.


Asunto(s)
Tiohidantoínas/farmacología , Tripanocidas/farmacología , Proteína ADAM17/metabolismo , Animales , Arginasa/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Leishmania/efectos de los fármacos , Leishmania/enzimología , Ratones , Mitocondrias/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas Protozoarias/metabolismo , Ovinos , Tiohidantoínas/síntesis química , Tiohidantoínas/metabolismo , Tiohidantoínas/toxicidad , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Tripanocidas/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA