Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Gels ; 10(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38534594

RESUMEN

Hydrogel-based dressings can effectively heal wounds by providing multiple functions, such as antibacterial, anti-inflammatory, and preangiogenic bioactivities. The ability to spray the dressing is important for the rapid and effective coverage of the wound surface. In this study, we developed a sprayable hydrogel-based wound dressing using naturally derived materials: hyaluronic acid and gelatin. We introduced methacrylate groups (HAMA and GelMA) to these materials to enable controllable photocrosslinking and form a stable hydrogel on the wound surface. To achieve sprayability, we evaluated the concentration of GelMA within a range of 5-15% (w/v) and then incorporated 1% (w/v) HAMA. Additionally, we incorporated calcium peroxide into the hydrogel at concentrations ranging from 0 to 12 mg/mL to provide self-oxygenation and antibacterial properties. The results showed that the composite hydrogels were sprayable and could provide oxygen for up to two weeks. The released oxygen relieved metabolic stress in fibroblasts and reduced cell death under hypoxia in in vitro culture. Furthermore, calcium peroxide added antibacterial properties to the wound dressing. In conclusion, the developed sprayable hydrogel dressing has the potential to be advantageous for wound healing due to its practical and conformable application, as well as its self-oxygenating and antibacterial functions.

3.
Biomacromolecules ; 25(1): 165-176, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38101806

RESUMEN

Hydrogels are often used as biomimetic matrices for tissue regeneration. The source of the hydrogel is of utmost importance, as it affects the physicochemical characteristics and must be carefully selected to stimulate specific cell behaviors. Naturally derived polymeric biomaterials have inherent biological moieties, such as cell binding and protease cleavage sites, and thus can provide a suitable microenvironment for cells. Human-derived matrices can mitigate potential risks associated with the immune response and disease transmission from animal-derived biomaterials. In this article, we developed glycidyl methacrylate-modified human-derived gelatin (hGelGMA) hydrogels for use in tissue engineering applications. By adjusting the glycidyl methacrylate concentration in the reaction mixture, we synthesized hGelGMA with low, medium, and high degrees of modification referred to as hGelGMA-L, hGelGMA-M, and hGelGMA-H, respectively. The amount of polymeric networks in the hydrogels was increased proportionally with the degree of modification. This change has resulted in a decreasing trend in pore size, porosity, and consequent swelling ratio. Similarly, increasing the polymer concentration also exhibited slower enzymatic degradation. On the other hand, increasing the polymer concentration led to an improvement in mechanical properties, where the compressive moduli of hGelGMA-L, hGelGMA-M, and hGelGMA-H hydrogels have changed at 2.9 ± 1.0, 13.7 ± 0.9, and 26.4 ± 2.5 kPa, respectively. The cytocompatibility of hGelGMA was assessed by 3D encapsulation of human-derived cells, including human dermal fibroblasts (HDFs) and human mesenchymal stem cells (hMSCs), in vitro. Regardless of the degree of glycidyl methacrylate modification, the hGelGMA hydrogels preserved the viability of encapsulated cells and supported their growth and proliferation. HDF cells showed a higher metabolic activity in hGelGMA-H, while MSCs exhibited an increased metabolic activity when they were encapsulated in hGelGMA-M or hGelGMA-H. These results showed that photocrosslinkable human-derived gelatin-based hydrogels can be synthesized and their physical properties can be distinctly fine-tuned to different extents as a function of their degrees of modification depending on the needs of the target tissue. Due to its promising physical and biological properties, it is anticipated that hGelGMA can be utilized in a wide spectrum of tissue engineering applications.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Animales , Humanos , Ingeniería de Tejidos/métodos , Hidrogeles/química , Andamios del Tejido/química , Gelatina/química , Materiales Biocompatibles/química , Polímeros
4.
Biomater Sci ; 11(16): 5560-5575, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401619

RESUMEN

Regeneration of large bone defects is a significant clinical challenge with variable success, but tissue engineering strategies are promising for rapid and effective bone regeneration. Maintaining an adequate oxygen level within implanted scaffolds is a major obstacle in bone tissue engineering. We developed a new oxygen-generating scaffold by electrospinning polycaprolactone with calcium peroxide (CaO2) nanocuboids (CPNCs) and characterized the physical, chemical, and biological properties of the resulting composites. Our scaffolds are highly porous and composed of submicron fibers that include CPNC as confirmed with XRD and FTIR analyses. Scaffolds containing CPNC provided controlled oxygen release for 14-days and supported cell proliferation while protecting preosteoblasts from hypoxia-induced cell death. Oxygen-generating scaffolds also facilitated bone mimetic defect contraction in vitro. The results suggest that our approach can be used to develop tissue-engineered products which target bone defects.


Asunto(s)
Osteogénesis , Andamios del Tejido , Humanos , Andamios del Tejido/química , Supervivencia Celular , Ingeniería de Tejidos/métodos , Regeneración Ósea , Oxígeno , Hipoxia , Diferenciación Celular , Proliferación Celular
5.
Bioengineering (Basel) ; 10(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37508881

RESUMEN

Bone defects resulting from trauma, disease, or aging present significant challenges in the clinic. Although biomaterial scaffolds for bone-tissue engineering have shown promising results, challenges remain, including the need for adequate mechanical strength and suitable bioactive agents within scaffolds to promote bone formation. Oxygen is a critical factor for successful bone formation, and low oxygen tension inhibits it. In this study, we developed gelatin methacryloyl (GelMA) hydrogel-impregnated electrospun polycaprolactone (PCL) scaffolds that can release oxygen over 3 weeks. We investigated the potential of composite scaffolds for cell survival in bone-tissue engineering. Our results showed that the addition of an increased amount of CaO2 nanoparticles to the PCL scaffolds significantly increased oxygen generation, which was modulated by GelMA impregnation. Moreover, the resulting scaffolds showed improved cytocompatibility, pre-osteoblast adhesion, and proliferation under hypoxic conditions. This finding is particularly relevant since hypoxia is a prevalent feature in various bone diseases. In addition to providing oxygen, CaO2 nanoparticles also act as reinforcing agents improving the mechanical property of the scaffolds, while the incorporation of GelMA enhances cell adhesion and proliferation properties. Overall, our newly developed self-oxygenating composite biomaterials are promising scaffolds for bone-tissue engineering applications.

6.
Chem Eng J ; 455(Pt 2)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644784

RESUMEN

The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.

7.
Biomater Sci ; 11(5): 1567-1588, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688522

RESUMEN

The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs. When developing tissues or organs of a particular shape, structure, and size as determined by the specific needs of the therapeutic intervention, a tissue specific oxygen supply to all parts of the tissue construct is an utmost requirement. Moreover, the lack of a functional vasculature in engineered tissues decreases cell survival upon implantation in the body. Oxygen-generating materials can alleviate this challenge in engineered tissue constructs by providing oxygen in a sustained and controlled manner. Oxygen-generating materials can be incorporated into 3D scaffolds allowing the cells to receive and utilize oxygen efficiently. In this review, we present an overview of the use of oxygen-generating materials in various tissue engineering applications in an organ specific manner as well as their potential use in the clinic.


Asunto(s)
Oxígeno , Andamios del Tejido , Humanos , Andamios del Tejido/química , Oxígeno/química , Ingeniería de Tejidos/métodos , Supervivencia Celular
8.
ACS Biomater Sci Eng ; 9(1): 409-426, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36469567

RESUMEN

Homogeneous vascularization of implanted tissue constructs can extend to 5 weeks, during which cell death can occur due to inadequate availability of oxygen. Researchers are engineering biomaterials that generate and release oxygen in a regulated manner, in an effort to overcome this hurdle. A main limitation of the existing oxygen-generating biomaterials is the uncontrolled release of oxygen, which is ultimately detrimental to the cells. This study demonstrates the incorporation of calcium peroxide (CaO2) within a hydrophobic polymer, polycaprolactone (PCL), to yield composite scaffolds with controlled oxygen release kinetics sustained over 5 weeks. Oxygen-generating microparticles coencapsulated with cardiomyocytes in a gelatin-based hydrogel matrix can serve as model systems for cardiac tissue engineering. Specifically, the results reveal that the oxygen-generating microspheres significantly improve the scaffold mechanical strength ranging from 5 kPa to 35 kPa, have an average scaffold pore size of 50-100 µm, swelling ratios of 33.3-29.8%, and degradation with 10-49% remaining mass at the end of a 48 h accelerated enzymatic degradation. The oxygen-generating scaffolds demonstrate improvement in cell viability, proliferation, and metabolic activity compared to the negative control group when cultured under hypoxia. Additionally, the optimized oxygen-generating constructs display no cytotoxicity or apoptosis. These oxygen-generating scaffolds can possibly assist the in vivo translation of cardiac tissue constructs.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Oxígeno/química , Materiales Biocompatibles , Polímeros
9.
Ann Biomed Eng ; 50(12): 1734-1749, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36261668

RESUMEN

Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host. Researchers have been working on identifying and targeting potential therapeutic target receptors utilizing different candidate drugs. Angiotensin-converting enzyme-2 (ACE2) has been known to perform critical functions in maintaining healthy cardiorespiratory function. However, ACE2 also functions as the binding site for the spike protein of SARS-CoV-2, allowing the virus to enter the cells and ensue infection. Therefore, drugs targeting ACE2 receptors can be considered as therapeutic candidates. Strategies targeting the level of ACE2 expression have been investigated and compared to other potential therapeutic targets, such as TMPRSS2, RdRp, and DPP4. This mini review discusses the key therapeutic approaches that target the ACE2 receptor, which is critical to the cellular entry and propagation of the novel SARS-CoV-2. In addition, we summarize the main advantages of ACE2 targeting against alternative approaches for the treatment of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Internalización del Virus , Humanos , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , SARS-CoV-2/metabolismo , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
10.
Gels ; 8(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35621547

RESUMEN

This Special Issue celebrates many outstanding quality papers published in Gels over the past six years since its first issue was published in 2015 [...].

11.
Gels ; 8(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35200508

RESUMEN

Chronic wounds severely affect 1-2% of the population in developed countries. It has been reported that nearly 6.5 million people in the United States suffer from at least one chronic wound in their lifetime. The treatment of chronic wounds is critical for maintaining the physical and mental well-being of patients and improving their quality of life. There are a host of methods for the treatment of chronic wounds, including debridement, hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy, skin grafts, and hydrogel dressings. Among these, hydrogel dressings represent a promising and viable choice because their tunable functional properties, such as biodegradability, adhesivity, and antimicrobial, anti-inflammatory, and pre-angiogenic bioactivities, can accelerate the healing of chronic wounds. This review summarizes the types of chronic wounds, phases of the healing process, and key therapeutic approaches. Hydrogel-based dressings are reviewed for their multifunctional properties and their advantages for the treatment of chronic wounds. Examples of commercially available hydrogel dressings are also provided to demonstrate their effectiveness over other types of wound dressings for chronic wound healing.

12.
Bioact Mater ; 13: 64-81, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35224292

RESUMEN

Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO2) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8-9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm3 bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.

13.
Micromachines (Basel) ; 12(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34945337

RESUMEN

As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.

14.
ACS Appl Mater Interfaces ; 13(51): 60921-60932, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34905346

RESUMEN

Scaffold-based approaches for bone regeneration have been studied using a wide range of biomaterials as reinforcing agents to improve the mechanical strength and bioactivity of the 3D constructs. Eggshells are sustainable and inexpensive materials with unique biological and chemical properties to support bone differentiation. The incorporation of eggshell particles within hydrogels yields highly osteoinductive and osteoconductive scaffolds. This study reveals the effects of microparticles of whole eggshells, eggshells without a membrane, and a pristine eggshell membrane on osteogenic differentiation in protein-derived hydrogels. The in vitro studies showed that gels reinforced with eggshells with and without a membrane demonstrated comparable cellular proliferation, osteogenic gene expression, and osteogenic differentiation. Subsequently, in vivo studies were performed to implant eggshell microparticle-reinforced composite hydrogel scaffolds into critical-sized cranial defects in Sprague Dawley (SD) rats for up to 12 weeks to study bone regeneration. The in vivo results showed that the eggshell microparticle-based scaffolds supported an average bone volume of 60 mm3 and a bone density of 2000 HU 12 weeks post implantation. Furthermore, histological analyses of the explanted scaffolds showed that the eggshell microparticle-reinforced scaffolds permitted tissue infiltration and induced bone tissue formation over 12 weeks. The histology staining also indicated that these scaffolds induced significantly higher bone regeneration at 6 and 12 weeks as compared to the blank (no scaffold) and pristine gel scaffolds. The eggshell microparticle-reinforced scaffolds also supported significantly higher bone formation, remodeling, and vascularization over 6 and 12 weeks as confirmed by immunohistochemistry analysis. Collectively, our results indicated that eggshell microparticle-reinforced scaffolds facilitated significant bone regeneration in critical-sized cranial defects.


Asunto(s)
Materiales Biocompatibles/química , Regeneración Ósea/efectos de los fármacos , Cáscara de Huevo/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/síntesis química , Ensayo de Materiales , Osteogénesis/efectos de los fármacos , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos
15.
Bioengineering (Basel) ; 8(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821735

RESUMEN

Bone tissue engineering offers versatile solutions to broaden clinical options for treating skeletal injuries. However, the variety of robust bone implants and substitutes remains largely uninvestigated. The advancements in hydrogel scaffolds composed of natural polymeric materials and osteoinductive microparticles have shown to be promising solutions in this field. In this study, gelatin methacrylate (GelMA) hydrogels containing bone meal powder (BP) particles were investigated for their osteoinductive capacity. As natural source of the bone mineral, we expect that BP improves the scaffold's ability to induce mineralization. We characterized the physical properties of GelMA hydrogels containing various BP concentrations (0, 0.5, 5, and 50 mg/mL). The in vitro cellular studies revealed enhanced mechanical performance and the potential to promote the differentiation of pre-osteoblast cells. The in vivo studies demonstrated both promising biocompatibility and biodegradation properties. Overall, the biological and physical properties of this biomaterial is tunable based on BP concentration in GelMA scaffolds. The findings of this study offer a new composite scaffold for bone tissue engineering.

16.
Lab Chip ; 21(17): 3289-3297, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612459

RESUMEN

Tacrolimus is one of the most effective and prevalent drugs used to combat vascularized composite allotransplantation rejection. We have fabricated a rapid and easy-to-use six-layer paper based microfluidic device using the principles of competitive immunoassays and vertical flow microfluidics for colorimetric detection of tacrolimus in a small volume of blood.


Asunto(s)
Técnicas Biosensibles , Alotrasplante Compuesto Vascularizado , Monitoreo de Drogas , Rechazo de Injerto , Tacrolimus
17.
Int J Nanomedicine ; 16: 4289-4319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211272

RESUMEN

Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.


Asunto(s)
Materiales Biocompatibles/química , Sustitutos de Huesos , Nanoestructuras/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Aleaciones/química , Animales , Sustitutos de Huesos/química , Huesos/fisiología , Humanos , Rayos Láser , Impresión Tridimensional/instrumentación , Regeneración , Estereolitografía , Titanio/química
18.
Blood Cancer Discov ; 2(4): 338-353, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34268498

RESUMEN

The bone marrow (BM) microenvironment actively promotes multiple myeloma (MM) pathogenesis and therapies targeting both cancer cells and the niche are highly effective. We were interested in identifying novel signaling pathways supporting MM-BM crosstalk. Mutations in the transmembrane receptor Roundabout 1 (ROBO1) were recently identified in MM patients, however their functional consequences are uncertain. Through protein structure-function studies, we discovered that ROBO1 is necessary for MM adhesion to BM stromal and endothelial cells and ROBO1 knock out (KO) compromises BM homing and engraftment in a disseminated mouse model. ROBO1 KO significantly decreases MM proliferation in vitro and intra- and extramedullary tumor growth, in vivo. Mechanistically, ROBO1 C-terminus is cleaved in a ligand-independent fashion and is sufficient to promote MM proliferation. Viceversa, mutants lacking the cytoplasmic domain, including the human-derived G674* truncation, act dominantly negative. Interactomic and RNA sequencing studies suggest ROBO1 may be involved in RNA processing, supporting further studies.


Asunto(s)
Médula Ósea , Mieloma Múltiple , Proteínas del Tejido Nervioso , Receptores Inmunológicos , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea , Células Endoteliales/metabolismo , Humanos , Ratones , Mieloma Múltiple/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Microambiente Tumoral/genética , Proteínas Roundabout
20.
Stem Cell Rev Rep ; 17(4): 1343-1361, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33864233

RESUMEN

Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage. However, the recent advanced methods of using specific epigenetic modifiers and exosomes to manipulate the epigenome and molecular pathways of MSCs to modify the cardiac gene expression yield better profiled cardiomyocyte like cells in vitro. Hitherto, the role of cardiac specific inducers triggering cardiac differentiation at the cellular and molecular level is not well understood. Therefore, the current review highlights the impact and recent trends in employing biological and chemical inducers on cardiac differentiation of MSCs. Thereby, deciphering the interactions between the cellular microenvironment and the cardiac inducers will help us to understand cardiomyogenesis of MSCs. Additionally, the review also provides an insight on skeptical roles of the cell free biological factors and extracellular scaffold assisted mode for manipulation of native and transplanted stem cells towards translational cardiac research.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Diferenciación Celular/genética , Humanos , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...