Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Hematol ; 61(3): 163-171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782635

RESUMEN

Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown. In this review, we examine the supporting signals from T cells to CLL cells in the lymph node niche, summarize key findings on T-cell functional defects, delve into potential underlying causes, and explore novel strategies for reversing these deficiencies. Our goal is to identify strategies aimed at resolving CLL-induced T-cell dysfunction which, in the future, will enhance the efficacy of autologous T-cell-based therapies for CLL patients.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfocitos T , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/terapia , Humanos , Linfocitos T/inmunología , Ganglios Linfáticos/patología , Ganglios Linfáticos/inmunología
2.
Methods Mol Biol ; 2608: 97-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653704

RESUMEN

Fibrillar collagen is an abundant extracellular matrix (ECM) component of interstitial tissues which supports the structure of many organs, including the skin and breast. Many different physiological processes, but also pathological processes such as metastatic cancer invasion, involve interstitial cell migration. Often, cell movement takes place through small ECM gaps and pores and depends upon the ability of the cell and its stiff nucleus to deform. Such nuclear deformation during cell migration may impact nuclear integrity, such as of chromatin or the nuclear envelope, and therefore the morphometric analysis of nuclear shapes can provide valuable insight into a broad variety of biological processes. Here, we describe a protocol on how to generate a cell-collagen model in vitro and how to use confocal microscopy for the static and dynamic visualization of labeled nuclei in single migratory cells. We developed, and here provide, two scripts that (Fidler, Nat Rev Cancer 3(6):453-458, 2003) enable the semi-automated and fast quantification of static single nuclear shape descriptors, such as aspect ratio or circularity, and the nuclear irregularity index that forms a combination of four distinct shape descriptors, as well as (Frantz et al., J Cell Sci 123 (Pt 24):4195-4200, 2010) a quantification of their changes over time. Finally, we provide quantitative measurements on nuclear shapes from cells that migrated through collagen either in the presence or the absence of an inhibitor of collagen degradation, showing the distinctive power of this approach. This pipeline can also be applied to cell migration studied in different assays, ranging from 3D microfluidics to migration in the living organism.


Asunto(s)
Colágeno , Matriz Extracelular , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA