Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AJNR Am J Neuroradiol ; 37(12): 2217-2223, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27585700

RESUMEN

BACKGROUND AND PURPOSE: Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. MATERIALS AND METHODS: Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (Ktrans_Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (Ktrans_SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. RESULTS: Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (rs ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and Ktrans_Φ, microvessel area and Ktrans_SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ rs ≤ 0.57). A weaker correlation was found between microvessel density and Ktrans_Φ and between microvessel density and Ktrans_SI (rs ≤ 0.41). CONCLUSIONS: With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Glioma/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Volumen Sanguíneo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Medios de Contraste , Femenino , Glioma/diagnóstico por imagen , Glioma/fisiopatología , Humanos , Inmunohistoquímica , Masculino , Microvasos/diagnóstico por imagen , Microvasos/patología , Persona de Mediana Edad , Pronóstico , Estadísticas no Paramétricas
2.
AJNR Am J Neuroradiol ; 36(11): 2017-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26228886

RESUMEN

BACKGROUND AND PURPOSE: Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. MATERIALS AND METHODS: This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. RESULTS: Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. CONCLUSIONS: In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV.


Asunto(s)
Astrocitoma/patología , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Clasificación del Tumor/métodos , Cuidados Preoperatorios/métodos , Adulto , Anciano , Algoritmos , Medios de Contraste , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos Organometálicos , Estudios Prospectivos , Curva ROC , Estadísticas no Paramétricas
3.
AJNR Am J Neuroradiol ; 36(1): 63-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24948500

RESUMEN

BACKGROUND AND PURPOSE: The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. MATERIALS AND METHODS: This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. RESULTS: For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). CONCLUSIONS: In patients with glioma, those with a high contrast transfer coefficient have lower survival than those with low parameters.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Glioma/mortalidad , Glioma/patología , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Medios de Contraste , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Análisis de Supervivencia , Tasa de Supervivencia
4.
J Bone Joint Surg Br ; 94(9): 1187-92, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22933489

RESUMEN

Advanced MRI cartilage imaging such as T(1)-rho (T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic radiological changes may provide prognostic information in the management of joint disease. This study aimed first to determine the normal T1ρ profile of cartilage within the hip, and secondly to identify any differences in T1ρ profile between the normal and symptomatic femoroacetabular impingement (FAI) hip. Ten patients with cam-type FAI (seven male and three female, mean age 35.9 years (28 to 48)) and ten control patients (four male and six female, mean age 30.6 years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation times for full thickness and each of the three equal cartilage thickness layers were calculated and compared between the groups. The mean T1ρ relaxation times for full cartilage thickness of control and FAI hips were similar (37.17 ms (SD 9.95) and 36.71 ms (SD 6.72), respectively). The control group demonstrated a T1ρ value trend, increasing from deep to superficial cartilage layers, with the middle third having significantly greater T1ρ relaxation values than the deepest third (p = 0.008). The FAI group demonstrated loss of this trend. The deepest third in the FAI group demonstrated greater T1ρ relaxation values than controls (p = 0.028). These results suggest that 1.5T T1ρ MRI can detect acetabular hyaline cartilage changes in patients with FAI.


Asunto(s)
Acetábulo/patología , Enfermedades de los Cartílagos/diagnóstico , Cartílago Articular/patología , Pinzamiento Femoroacetabular/complicaciones , Articulación de la Cadera/patología , Imagen por Resonancia Magnética/métodos , Adulto , Enfermedades de los Cartílagos/etiología , Femenino , Pinzamiento Femoroacetabular/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Reproducibilidad de los Resultados
5.
AJNR Am J Neuroradiol ; 33(8): 1539-45, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22442046

RESUMEN

BACKGROUND AND PURPOSE: The accuracy of tumor plasma volume and K(trans) estimates obtained with DCE MR imaging may have inaccuracies introduced by a poor estimation of the VIF. In this study, we evaluated the diagnostic accuracy of a novel technique by using a phase-derived VIF and "bookend" T1 measurements in the preoperative grading of patients with suspected gliomas. MATERIALS AND METHODS: This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. Both magnitude and phase images were acquired during DCE MR imaging for estimates of K(trans)_φ and V(p_)φ (calculated from a phase-derived VIF and bookend T1 measurements) as well as K(trans)_SI and V(p_)SI (calculated from a magnitude-derived VIF without T1 measurements). RESULTS: Median K(trans)_φ values were 0.0041 minutes(-1) (95 CI, 0.00062-0.033), 0.031 minutes(-1) (0.011-0.150), and 0.088 minutes(-1) (0.069-0.110) for grade II, III, and IV gliomas, respectively (P ≤ .05 for each). Median V(p_)φ values were 0.64 mL/100 g (0.06-1.40), 0.98 mL/100 g (0.34-2.20), and 2.16 mL/100 g (1.8-3.1) with P = .15 between grade II and III gliomas and P = .015 between grade III and IV gliomas. In differentiating low-grade from high-grade gliomas, AUCs for K(trans)_φ, V(p_φ), K(trans)_SI, and V(p_)SI were 0.87 (0.73-1), 0.84 (0.69-0.98), 0.81 (0.59-1), and 0.84 (0.66-0.91). The differences between the AUCs were not statistically significant. CONCLUSIONS: K(trans)_φ and V(p_)φ are parameters that can help in differentiating low-grade from high-grade gliomas.


Asunto(s)
Neoplasias Encefálicas/patología , Medios de Contraste , Gadolinio DTPA , Glioma/patología , Imagen por Resonancia Magnética , Área Bajo la Curva , Humanos , Clasificación del Tumor , Valor Predictivo de las Pruebas , Curva ROC , Sensibilidad y Especificidad
6.
Biophys J ; 59(3): 629-39, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-2049523

RESUMEN

The nuclear magnetic resonance spin-grouping technique has been applied to dentin from human donors of different ages. The apparent T2, T1, and T1 rho have been determined for natural dentin, for dentin which has been dried in vacuum, and for dried dentin which has been rehydrated in an atmosphere with 75% relative humidity. All apparent spin relaxation has been analyzed for exchange between the spin groups in which the dentin protons exist; the analyses incorporate the results of selective inversion recovery T1 measurements which better probe the effects of exchange. The exchange analyses of the high fields and rotating frame spin-lattice relaxation have also been correlated to determine uniquely the inherent relaxation parameters of the proton spin groups constituting the dentin magnetization. The natural dentin contains protons on water, protein, and hydroxy apatite; these spins contribute 50%, 45%, and 5% to the total dentin proton magnetization, respectively. The water exists in three distinct environments, the dynamics of each environment has been modeled. In the natural dentin 30% of the water undergoes uni-axial reorientation. 52% of the water has similar relaxation characteristics to bound water hydrating a large molecule, and the majority of the remaining water acts as bulk water undergoing isotropic reorientation. The results are independent of the age of the donor.


Asunto(s)
Dentina/química , Adulto , Envejecimiento/metabolismo , Fenómenos Biofísicos , Biofisica , Humanos , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad , Modelos Químicos , Agua/química
7.
Biophys J ; 50(1): 181-91, 1986 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3730502

RESUMEN

NMR spin relaxation experiments performed on healthy mouse muscle tissue at 40 MHz and 293 K are reported. The spin-lattice relaxation experiments were performed using different combinations of selective and nonselective radio frequency pulses. Relaxation experiments in the rotating frame at H1 = 10, 5 and 1 G are also reported. The experimental results were analyzed using the spin-grouping method, which yields the sizes of the resolved magnetization components as well as their T2's and T1's (or T1p's) for the nonexponential relaxation functions. These results were analyzed further for the exchange between different spin groups. It has been found that to explain all of these experimental data it was necessary to use a four-compartment model of the muscle tissue that consists of a lipid spin group, a "solid-like" spin group (mainly proteins), a "bulk water" spin group and a "bound water" spin group. The chemical exchange rate between "bulk" and "bound" water was found to be 29 +/- 9s-1 at room temperature. The exchange rate between the bound water and the solid moderator was estimated to be approximately 500 s-1.


Asunto(s)
Músculos/fisiología , Animales , Espectroscopía de Resonancia Magnética , Matemática , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA