Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 81(4): 1354-63, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23403558

RESUMEN

Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses.


Asunto(s)
Interleucinas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Células Th2/inmunología , Trichinella spiralis/inmunología , Animales , Interleucina-33 , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología
2.
Eur J Immunol ; 41(8): 2176-84, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21604257

RESUMEN

Nucleic acid structures are highly conserved through evolution and when self nucleic acids are aberrantly detected by toll-like receptors (TLRs) they contribute to autoimmune disease. For this reason, multiple regulatory mechanisms exist to prevent immune responses to self nucleic acids. TLR9 is a nucleic acid-sensing TLR that is regulated at multiple levels including association with accessory proteins, intracellular localization and proteolytic processing. In the endolysosomal compartment TLR9 is proteolytically processed to an 80 kDa form (p80) and this processing is a prerequisite for activation. Here, we identified a soluble form of TLR9 (sTLR9) generated by a novel proteolytic event that cleaved TLR9 between amino acids 724-735. Similar to p80, sTLR9 was generated in endosomes. However, generation of sTLR9 was independent of the cysteine protease cathepsin B, active at acidic pH, but partially dependent on cathepsin S, a protease active at neutral pH. Most importantly, sTLR9 inhibited TLR9-dependent signaling. Altogether, these data support a model where an intrinsic proteolytic processing mechanism negatively regulates TLR9 signaling. A proper balance between the independent proteolytic events probabably contributes to regulation of TLR9-mediated innate immunity and prevention of autoimmune disease.


Asunto(s)
Catepsinas/metabolismo , Endosomas/metabolismo , Transducción de Señal , Receptor Toll-Like 9/metabolismo , Animales , Catepsinas/genética , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Confocal , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Interferencia de ARN , Solubilidad , Receptor Toll-Like 9/química , Receptor Toll-Like 9/genética
3.
Immunol Cell Biol ; 87(3): 209-17, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19079358

RESUMEN

Toll-like receptor 9 (TLR9) promiscuously binds self- and microbial DNA, but only microbial DNA elicits an inflammatory response. How TLR9 discriminates between self- and foreign DNA is unclear, but inappropriate localization of TLR9 permits response to self-DNA, suggesting that TLR9 localization and trafficking are critical components. The molecular mechanisms controlling the movement of TLR9 may provide new insight into the recognition of DNA in normal and in pathological conditions such as autoimmune systemic lupus erythematosus. We have shown earlier that TLR9 is retained in the endoplasmic reticulum (ER) and it moves to endolysosomes to recognize CpG DNA. Other studies have suggested that TLR9 bypasses the Golgi complex to access endolysosomes. Here, we show that TLR9 translocates from ER to endolysosomes through the Golgi complex and that Golgi export is required for optimal TLR9 signaling. In all, 6-13% of TLR9 constitutively exits the ER, moves through the Golgi complex and resides in lysosomal-associated membrane protein-1-positive vesicles. TLR9 bound to CpG DNA had glycan modifications indicative of Golgi processing confirming that TLR9 travels through the Golgi complex to access CpG DNA in endolysosomes. Together, these data support a model where TLR9 uses traditional secretory pathways and does not bypass the Golgi complex.


Asunto(s)
Islas de CpG/inmunología , ADN/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/inmunología , Receptor Toll-Like 9/metabolismo , Brefeldino A/farmacología , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/fisiología , Células HeLa , Humanos , Lisosomas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/inmunología , FN-kappa B/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...