Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-421008

RESUMEN

A safe and effective vaccine against COVID-19 is urgently needed in quantities sufficient to immunise large populations. We report the preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens. BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon). BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (P2 S). The flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity. Approximately 20% of the P 2S trimers are in the two-RBD down, one-RBD up state. In mice, one intramuscular dose of either candidate elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong TH1 CD4+ and IFN{gamma}+ CD8+ T-cell responses. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralising geometric mean titres 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protect macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. Both candidates are being evaluated in phase 1 trials in Germany and the United States. BNT162b2 is being evaluated in an ongoing global, pivotal Phase 2/3 trial (NCT04380701, NCT04368728).

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20245175

RESUMEN

BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 {micro}g dose levels. BNT162b2 elicited strong antibody responses, with S-binding IgG concentrations above those in a COVID-19 human convalescent sample (HCS) panel. Day 29 (7 days post-boost) SARS-CoV-2 serum 50% neutralising geometric mean titers were 0.3-fold (1 {micro}g) to 3.3-fold (30 {micro}g) those of the HCS panel. The BNT162b2-elicited sera neutralised pseudoviruses with diverse SARS-CoV-2 S variants. Concurrently, in most participants, S-specific CD8+ and T helper type 1 (TH1) CD4+ T cells had expanded, with a high fraction producing interferon-{gamma} (IFN{gamma}). Using peptide MHC multimers, the epitopes recognised by several BNT162b2-induced CD8+ T cells when presented on frequent MHC alleles were identified. CD8+ T cells were shown to be of the early-differentiated effector-memory phenotype, with single specificities reaching 0.01-3% of circulating CD8+ T cells. In summary, vaccination with BNT162b2 at well tolerated doses elicits a combined adaptive humoral and cellular immune response, which together may contribute to protection against COVID-19.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-280818

RESUMEN

To contain the coronavirus disease 2019 (COVID-19) pandemic, a safe and effective vaccine against the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is urgently needed in quantities sufficient to immunise large populations. In this study, we report the design, preclinical development, immunogenicity and anti-viral protective effect in rhesus macaques of the BNT162b2 vaccine candidate. BNT162b2 contains an LNP-formulated nucleoside-modified mRNA that encodes the spike glycoprotein captured in its prefusion conformation. After expression of the BNT162b2 coding sequence in cells, approximately 20% of the spike molecules are in the one-RBD up, two-RBD down state. Immunisation of mice with a single dose of BNT162b2 induced dose level-dependent increases in pseudovirus neutralisation titers. Prime-boost vaccination of rhesus macaques elicited authentic SARS-CoV-2 neutralising geometric mean titers 10.2 to 18.0 times that of a SARS-CoV-2 convalescent human serum panel. BNT162b2 generated strong TH1 type CD4+ and IFN{gamma}+ CD8+ T-cell responses in mice and rhesus macaques. The BNT162b2 vaccine candidate fully protected the lungs of immunised rhesus macaques from infectious SARS-CoV-2 challenge. BNT162b2 is currently being evaluated in a global, pivotal Phase 2/3 trial (NCT04368728).

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20176651

RESUMEN

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally. Multiple vaccine candidates are under development, but no vaccine is currently available. MethodsHealthy adults 18-55 and 65-85 years of age were randomized in an ongoing, placebo-controlled, observer-blinded dose-escalation study to receive 2 doses at 21-day intervals of placebo or either of 2 lipid nanoparticle-formulated, nucleoside-modified RNA vaccine candidates: BNT162b1, which encodes a secreted trimerized SARS-CoV-2 receptor-binding domain, or BNT162b2, which encodes a prefusion stabilized membrane-anchored SARS-CoV-2 full-length spike. In each of 13 groups of 15 participants, 12 received vaccine and 3 received placebo. Groups were distinguished by vaccine candidate, age of participant, and vaccine dose level. Interim safety and immunogenicity data of BNT162b1 in younger adults have been reported previously from US and German trials. We now present additional safety and immunogenicity data from the US Phase 1 trial that supported selection of the vaccine candidate advanced to a pivotal Phase 2/3 safety and efficacy evaluation. ResultsIn both younger and older adults, the 2 vaccine candidates elicited similar dose- dependent SARS-CoV-2-neutralizing geometric mean titers (GMTs), comparable to or higher than the GMT of a panel of SARS-CoV-2 convalescent sera. BNT162b2 was associated with less systemic reactogenicity, particularly in older adults. ConclusionThese results support selection of the BNT162b2 vaccine candidate for Phase 2/3 large-scale safety and efficacy evaluation, currently underway.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20140533

RESUMEN

An effective vaccine is needed to halt the spread of the SARS-CoV-2 pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 COVID-19 vaccine trial with BNT162b1, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Here we present antibody and T cell responses after BNT162b1 vaccination from a second, non-randomized open-label phase 1/2 trial in healthy adults, 18-55 years of age. Two doses of 1 to 50 {micro}g of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those in a COVID-19 convalescent human serum panel (HCS). Day 43 SARS-CoV-2 serum neutralising geometric mean titers were 0.7-fold (1 {micro}g) to 3.5-fold (50 {micro}g) those of HCS. Immune sera broadly neutralised pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had TH1 skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon (IFN){gamma} was produced by a high fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T-cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest multiple beneficial mechanisms with potential to protect against COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA