Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neuroanat ; 14: 560534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324175

RESUMEN

There is currently a limited understanding of the morphological and functional organization of the olfactory system in cartilaginous fishes, particularly when compared to bony fishes and terrestrial vertebrates. In this fish group, there is a clear paucity of information on the characterization, density, and distribution of olfactory receptor neurons (ORNs) within the sensory olfactory epithelium lining the paired olfactory rosettes, and their functional implications with respect to the hydrodynamics of incurrent water flow into the nares. This imaging study examines the brownbanded bamboo shark Chiloscyllium punctatum (Elasmobranchii) and combines immunohistochemical labeling using antisera raised against five G-protein α-subunits (Gαs/olf, Gαq/ 11 / 14, Gαi- 1 / 2 / 3, Gαi- 3, Gα o ) with light and electron microscopy, to characterize the morphological ORN types present. Three main ORNs ("long", "microvillous" and "crypt-like") are confirmed and up to three additional microvilli-bearing types are also described; "Kappe-like" (potential or homologous "Kappe" as in teleosts), "pear-shaped" and "teardrop-shaped" cells. These morphotypes will need to be confirmed molecularly in the future. Using X-ray diffusible iodine-based contrast-enhanced computed tomography (diceCT), high-resolution scans of the olfactory rosettes, olfactory bulbs (OBs), peduncles, and telencephalon reveal a lateral segregation of primary olfactory inputs within the OBs, with distinct medial and lateral clusters of glomeruli, suggesting a potential somatotopic organization. However, most ORN morphotypes are found to be ubiquitously distributed within the medial and lateral regions of the olfactory rosette, with at least three microvilli-bearing ORNs labeled with anti-Gα o found in significantly higher densities in lateral lamellae [in lateral lamellae] and on the anterior portion of lamellae (facing the olfactory cavity). These microvilli-bearing ORN morphotypes (microvillous, "Kappe-like," "pear-shaped," and "teardrop-shaped") are the most abundant across the olfactory rosette of this species, while ciliated ORNs are less common and crypt cells are rare. Spatial simulations of the fluid dynamics of the incurrent water flow into the nares and within the olfactory cavities indicate that the high densities of microvilli-bearing ORNs located within the lateral region of the rosette are important for sampling incoming odorants during swimming and may determine subsequent tracking behavior.

2.
Brain Behav Evol ; 95(3-4): 139-161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33171468

RESUMEN

The volume of the olfactory bulbs (OBs) relative to the brain has been used previously as a proxy for olfactory capabilities in many vertebrate taxa, including fishes. Although this gross approach has predictive power, a more accurate assessment of the number of afferent olfactory inputs and the convergence of this information at the level of the telencephalon is critical to our understanding of the role of olfaction in the behaviour of fishes. In this study, we used transmission electron microscopy to assess the number of first-order axons within the olfactory nerve (ON) and the number of second-order axons in the olfactory peduncle (OP) in established model species within cartilaginous (brownbanded bamboo shark, Chiloscyllium punctatum [CP]) and bony (common goldfish, Carassius auratus [CA]) fishes. The total number of axons varied from a mean of 18.12 ± 7.50 million in the ON to a mean of 0.38 ± 0.21 million in the OP of CP, versus 0.48 ± 0.16 million in the ON and 0.09 ± 0.02 million in the OP of CA. This resulted in a convergence ratio of approximately 50:1 and 5:1, respectively, for these two species. Based on astroglial ensheathing, axon type (unmyelinated [UM] and myelinated [M]) and axon size, we found no differentiated tracts in the OP of CP, whereas a lateral and a medial tract (both of which could be subdivided into two bundles or areas) were identified for CA, as previously described. Linear regression analyses revealed significant differences not only in axon density between species and locations (nerves and peduncles), but also in axon type and axon diameter (p < 0.05). However, UM axon diameter was larger in the OPs than in the nerve in both species (p = 0.005), with no significant differences in UM axon diameter in the ON (p = 0.06) between species. This study provides an in-depth analysis of the neuroanatomical organisation of the ascending olfactory pathway in two fish taxa and a quantitative anatomical comparison of the summation of olfactory information. Our results support the assertion that relative OB volume is a good indicator of the level of olfactory input and thereby a proxy for olfactory capabilities.


Asunto(s)
Axones/ultraestructura , Carpa Dorada/anatomía & histología , Bulbo Olfatorio/citología , Nervio Olfatorio/citología , Vías Olfatorias/citología , Tiburones/anatomía & histología , Animales , Microscopía Electrónica de Transmisión , Bulbo Olfatorio/ultraestructura , Corteza Olfatoria/citología , Nervio Olfatorio/ultraestructura , Vías Olfatorias/ultraestructura
3.
Brain Struct Funct ; 225(8): 2347-2375, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32870419

RESUMEN

The size (volume or mass) of the olfactory bulbs in relation to the whole brain has been used as a neuroanatomical proxy for olfactory capability in a range of vertebrates, including fishes. Here, we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test the value of this novel bioimaging technique for generating accurate measurements of the relative volume of the main olfactory brain areas (olfactory bulbs, peduncles, and telencephalon) and to describe the morphological organisation of the ascending olfactory pathway in model fish species from two taxa, the brownbanded bamboo shark Chiloscyllium punctatum and the common goldfish Carassius auratus. We also describe the arrangement of primary projections to the olfactory bulb and secondary projections to the telencephalon in both species. Our results identified substantially larger olfactory bulbs and telencephalon in C. punctatum compared to C. auratus (comprising approximately 5.2% vs. 1.8%, and 51.8% vs. 11.8% of the total brain volume, respectively), reflecting differences between taxa, but also possibly in the role of olfaction in the sensory ecology of these species. We identified segregated primary projections to the bulbs, associated with a compartmentalised olfactory bulb in C. punctatum, which supports previous findings in elasmobranch fishes. DiceCT imaging has been crucial for visualising differences in the morphological organisation of the olfactory system of both model species. We consider comparative neuroanatomical studies between representative species of both elasmobranch and teleost fish groups are fundamental to further our understanding of the evolution of the olfactory system in early vertebrates and the neural basis of olfactory abilities.


Asunto(s)
Bulbo Olfatorio/diagnóstico por imagen , Vías Olfatorias/diagnóstico por imagen , Olfato/fisiología , Telencéfalo/diagnóstico por imagen , Animales , Carpa Dorada , Tamaño de los Órganos , Tiburones , Especificidad de la Especie , Tomografía Computarizada por Rayos X/métodos
4.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32471849

RESUMEN

Contrast-enhanced X-ray imaging provides a non-destructive and flexible approach to optimizing contrast in soft tissues, especially when incorporated with Lugol's solution (aqueous I2KI), a technique currently referred to as diffusible iodine-based contrast-enhanced computed tomography (diceCT). This stain exhibits high rates of penetration and results in excellent contrast between and within soft tissues, including the central nervous system. Here, we present a staining method for optimizing contrast in the brain of a cartilaginous fish, the brownbanded bamboo shark, Chiloscyllium punctatum, and a bony fish, the common goldfish, Carassius auratus, using diceCT. The aim of this optimization procedure is to provide suitable contrast between neural tissue and background tissue(s) of the head, thereby facilitating digital segmentation and volumetric analysis of the central nervous system. Both species were scanned before staining and were rescanned at time (T) intervals, either every 48 h (C. punctatum) or every 24 h (C. auratus), to assess stain penetration and contrast enhancement. To compare stain intensities, raw X-ray CT data were reconstructed using air and water calibration phantoms that were scanned under identical conditions to the samples. Optimal contrast across the brain was achieved at T = 240 h for C. punctatum and T = 96 h for C. auratus Higher resolution scans of the whole brain were obtained at the two optimized staining times for all the corresponding specimens. The use of diceCT provides a new and valuable tool for visualizing differences in the anatomic organization of both the central and peripheral nervous systems of fish.


Asunto(s)
Yodo , Animales , Encéfalo/diagnóstico por imagen , Medios de Contraste , Cabeza , Tomografía Computarizada por Rayos X
5.
Brain Behav Evol ; 89(2): 68-83, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28241131

RESUMEN

Fishes exhibit lifelong neurogenesis and continual brain growth. One consequence of this continual growth is that the nervous system has the potential to respond with enhanced plasticity to changes in ecological conditions that occur during ontogeny. The life histories of many teleost fishes are composed of a series of distinct stages that are characterized by shifts in diet, habitat, and behavior. In many cases, these shifts correlate with changes in overall brain growth and brain organization, possibly reflecting the relative importance of different senses and locomotor performance imposed by the new ecological niches they encounter throughout life. Chondrichthyan (cartilaginous) fishes also undergo ontogenetic shifts in habitat, movement patterns, diet, and behavior, but very little is known about any corresponding shifts in the size and organization of their brains. Here, we investigated postparturition ontogenetic changes in brain-body size scaling, the allometric scaling of seven major brain areas (olfactory bulbs, telencephalon, diencephalon, optic tectum, tegmentum, cerebellum, and medulla oblongata) relative to the rest of the brain, and cerebellar foliation in a chondrichthyan, i.e., the bluespotted stingray Neotrygon kuhlii. We also investigated the unusual morphological asymmetry of the cerebellum in this and other batoids. As in teleosts, the brain continues to grow throughout life, with a period of rapid initial growth relative to body size, before slowing considerably at the onset of sexual maturity. The olfactory bulbs and the cerebellum scale with positive allometry relative to the rest of the brain, whereas the other five brain areas scale with varying degrees of negative allometry. None of the major brain areas showed the stage-specific differences in rates of growth often found in teleosts. Cerebellar foliation also increases at a faster rate than overall brain growth. We speculate that changes in the olfactory bulbs and cerebellum could reflect increased olfactory and locomotor capabilities, which may be associated with ontogenetic shifts in diet, habitat use, and activity patterns, as well as shifts in behavior that occur with the onset of sexual maturity. The frequency distributions of the three cerebellar morphologies exhibited in this species best fit a 2:1:1 (right-sided:left-sided:intermediate) distribution, mirroring previous findings for another stingray species.


Asunto(s)
Ontologías Biológicas , Encéfalo/anatomía & histología , Rajidae/anatomía & histología , Animales , Gráficos por Computador , Femenino , Modelos Lineales , Masculino , Especificidad de la Especie
6.
Zoology (Jena) ; 116(5): 270-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23988133

RESUMEN

The electrosensory system is found in all chondrichthyan fishes and is used for several biological functions, most notably prey detection. Variation in the physical parameters of a habitat type, i.e. water conductivity, may influence the morphology of the electrosensory system. Thus, the electrosensory systems of freshwater rays are considerably different from those of fully marine species; however, little research has so far examined the morphology and distribution of these systems in euryhaline elasmobranchs. The present study investigates and compares the morphology and distribution of electrosensory organs in two sympatric stingray species: the (euryhaline) estuary stingray, Dasyatis fluviorum, and the (marine) blue-spotted maskray, Neotrygon kuhlii. Both species possess a significantly higher number of ventral electrosensory pores than previously assessed elasmobranchs. This correlates with a diet consisting of benthic infaunal and epifaunal prey, where the electrosensory pore distribution patterns are likely to be a function of both ecology and phylogeny. The gross morphology of the electrosensory system in D. fluviorum is more similar to that of other marine elasmobranch species, rather than that of freshwater species. Both D. fluviorum and N. kuhlii possess 'macro-ampullae' with branching canals leading to several alveoli. The size of the pores and the length of the canals in D. fluviorum are smaller than in N. kuhlii, which is likely to be an adaptation to habitats with lower conductivity. This study indicates that the morphology of the electrosensory system in a euryhaline elasmobranch species seems very similar to that of their fully marine counterparts. However, some morphological differences are present between these two sympatric species, which are thought to be linked to their habitat type.


Asunto(s)
Ecosistema , Órganos de los Sentidos/anatomía & histología , Rajidae/anatomía & histología , Animales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA