Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 7(4): e10723, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37065630

RESUMEN

Aldehyde dehydrogenase 2 (ALDH2) deficiency affects 35% to 45% of East Asians and 8% of the world population. ALDH2 is the second enzyme in the ethanol metabolism pathway. The common genetic variant ALDH2*2 allele has a glutamic acid-to-lysine substitution at position 487 (E487K) that reduces the enzyme activity, resulting in an accumulation of acetaldehyde after ethanol consumption. The ALDH2*2 allele is associated with increased risk of osteoporosis and hip fracture. Our prior study showed that administration of an adeno-associated virus (AAV) serotype rh.10 gene transfer vector expressing the human ALDH2 cDNA (AAVrh.10hALDH2) before initiation of ethanol consumption prevented bone loss in ALDH2-deficient homozygous knockin mice carrying the E487K mutation (Aldh2 E487K+/+). We hypothesized that AAVrh.10hALDH2 administration after establishment of osteopenia would be able to reverse bone loss due to ALDH2 deficiency and chronic ethanol consumption. To test this hypothesis, male and female Aldh2 E487K+/+ mice (n = 6) were given ethanol in the drinking water for 6 weeks to establish osteopenia and then administered AAVrh.10hALDH2 (1011 genome copies). Mice were evaluated for an additional 12 weeks. AAVrh.10hALDH2 administration after osteopenia was established corrected weight loss and locomotion phenotypes and, importantly, increased midshaft femur cortical bone thickness, the most important component of bone in the resistance to fractures, and showed a trend toward increased trabecular bone volume. AAVrh.10hALDH2 is a promising therapeutic for osteoporosis in ALDH2-deficient individuals. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Leukemia ; 36(2): 525-531, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34545183

RESUMEN

Chronic eosinophilic leukemia-not otherwise specified (CEL-NOS) is a rare, aggressive, fatal disease characterized by blood eosinophilia and dysfunction of organs infiltrated with eosinophils. Clinically, the disease manifests with weight loss, cough, weakness, diarrhea, and multi-organ dysfunction that is unresponsive to therapy. We developed a one-time gene therapy for CEL-NOS using an adeno-associated virus (AAV) expressing an anti-eosinophil monoclonal antibody (AAVrh.10mAnti-Eos) to provide sustained suppression of eosinophil numbers in blood, thus reducing eosinophil tissue invasion and organ dysfunction. A novel CEL-NOS model was developed in NOD-scid IL2rγnull (NSG) mice by administration of AAV expressing the cytokine IL5 (AAVrh.10mIL5), resulting in marked peripheral and tissue eosinophilia of the heart, lung, liver, and spleen, and eventually death. Mice were administered AAVrh.10mAnti-Eos (1011 genome copies) 4 wk after administration of AAVrh.10mIL5 and evaluated for anti-eosinophil antibody expression, blood eosinophil counts, organ eosinophil invasion, and survival. AAVrh.10mAnti-Eos expressed persistent levels of the anti-eosinophil antibody for >24 wk. Strikingly, CEL-NOS treated mice had markedly lower blood eosinophil levels and reduced mortality when compared with control treated mice. These results suggest that a single treatment with AAVrh.10mAnti-Eos has the potential to provide substantial therapeutic benefit to patients with CEL-NOS, a fatal malignant disorder.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Dependovirus/genética , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Terapia Genética , Síndrome Hipereosinofílico/terapia , Interleucina-5/genética , Leucemia/terapia , Animales , Eosinófilos/efectos de los fármacos , Femenino , Síndrome Hipereosinofílico/genética , Síndrome Hipereosinofílico/inmunología , Leucemia/genética , Leucemia/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
3.
Allergy ; 76(9): 2740-2752, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33748982

RESUMEN

BACKGROUND: Eosinophils are specialized granulocytic effector cells that store and release highly active mediators used in immune defense. Eosinophils are also implicated in the pathogenesis of allergic disorders, including eosinophilic esophagitis (EoE), a chronic disorder characterized by infiltration of eosinophils into the esophagus and release of mediators that damage tissue, resulting in gastrointestinal morbidity, food impaction, and dysphagia. Treatment with elimination diets and/or topical corticosteroid therapy slow disease progression, but are complicated by adverse effects, limited compliance, and loss of response to therapy. We hypothesized that a single administration of an adeno-associated virus (AAV) coding for an anti-eosinophil monoclonal antibody that induces eosinophil clearance (anti-Siglec-F) would treat on a persistent basis a murine model of EoE. METHODS: A mouse model of peanut-induced EoE that mimics the human disease was established by sensitization and challenge with peanut extract. After challenge, these mice exhibited an EoE phenotype demonstrated by elevated levels of blood eosinophils, infiltration of eosinophils in the esophagus with associated esophageal remodeling and food impaction. RESULTS: The mice were treated with a single intravenous administration (1011 genome copies) of AAVrh.10mAnti-Eos, a serotype rh.10 AAV vector coding for an anti-Siglec-F monoclonal antibody. Vector administration resulted in persistent, high levels of anti-Siglec-F antibody expression. Administration of AAVrh.10mAnti-Eos to the mouse model of EoE reduced blood (P < 0.02) and esophageal eosinophil numbers (P < 0.002) protected from esophageal tissue remodeling and minimized food impaction. CONCLUSION: These results suggest that a single treatment with AAVrh.10mAnti-Eos has the potential to provide persistent therapeutic benefit to patients with EoE.


Asunto(s)
Esofagitis Eosinofílica , Animales , Anticuerpos Monoclonales , Modelos Animales de Enfermedad , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/terapia , Eosinófilos , Terapia Genética , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...