Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Pathol ; : 3009858241257903, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864284

RESUMEN

AA-amyloidosis is frequent in shelter cats, and chronic kidney disease is the foremost cause of death. The aims were to describe kidney laboratory and microscopic findings in shelter cats with AA-amyloidosis. Cats were included if kidney specimens were collected post-mortem and laboratory data were available within 6 months before death. Renal lesions were evaluated with optical and electron microscopy. Mass spectrometry was used to characterize amyloid. Nine domestic short-hair cats were included; 4 females and 5 males with a median age of 8 years (range = 2-13). All cats had blood analyses and urinalyses available. Serum creatinine concentrations were increased in 6 cats and symmetric dimethylarginine was increased in all of the cats. All of the cats had proteinuria. Eight of 9 cats had amyloid in the medulla, and 9 had amyloid in the cortex (glomeruli). All cats had amyloid in the interstitium. Six cats had concurrent interstitial nephritis and 1 had membranoproliferative glomerulonephritis. All cats had extrarenal amyloid deposits. Amyloid was AA in each case. In conclusion, renal deposition of amyloid occurs in both cortex and medulla in shelter cats and is associated with azotemia and proteinuria. Renal involvement of systemic AA-amyloidosis should be considered in shelter cats with chronic kidney disease. The cat represents a natural model of renal AA-amyloidosis.

2.
J Mol Biol ; 435(24): 168320, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37865287

RESUMEN

Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.


Asunto(s)
Amiloide , Cadenas Ligeras de Inmunoglobulina , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Anticuerpos de Dominio Único , Animales , Humanos , Amiloide/inmunología , Caenorhabditis elegans , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/uso terapéutico , Miocitos Cardíacos/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/uso terapéutico , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/inmunología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/terapia
3.
J Mol Biol ; 435(18): 168215, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37516426

RESUMEN

Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.


Asunto(s)
Amiloide , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Amiloide/química , Microscopía por Crioelectrón/métodos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Riñón/metabolismo , Microambiente Tumoral
4.
PLoS One ; 18(3): e0281822, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36989207

RESUMEN

Systemic AA-amyloidosis is a protein-misfolding disease characterized by fibril deposition of serum amyloid-A protein (SAA) in several organs in humans and many animal species. Fibril deposits originate from abnormally high serum levels of SAA during chronic inflammation. A high prevalence of AA-amyloidosis has been reported in captive cheetahs and a horizontal transmission has been proposed. In domestic cats, AA-amyloidosis has been mainly described in predisposed breeds but only rarely reported in domestic short-hair cats. Aims of the study were to determine AA-amyloidosis prevalence in dead shelter cats. Liver, kidney, spleen and bile were collected at death in cats from 3 shelters. AA-amyloidosis was scored. Shedding of amyloid fibrils was investigated with western blot in bile and scored. Descriptive statistics were calculated. In the three shelters investigated, prevalence of AA-amyloidosis was 57.1% (16/28 cats), 73.0% (19/26) and 52.0% (13/25), respectively. In 72.9% of cats (35 in total) three organs were affected concurrently. Histopathology and immunofluorescence of post-mortem extracted deposits identified SAA as the major protein source. The duration of stay in the shelters was positively associated with a histological score of AA-amyloidosis (B = 0.026, CI95% = 0.007-0.046; p = 0.010). AA-amyloidosis was very frequent in shelter cats. Presence of SAA fragments in bile secretions raises the possibility of fecal-oral transmission of the disease. In conclusion, AA-amyloidosis was very frequent in shelter cats and those staying longer had more deposits. The cat may represent a natural model of AA-amyloidosis.


Asunto(s)
Acinonyx , Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Gatos , Animales , Amiloidosis/epidemiología , Amiloidosis/veterinaria , Amiloide , Proteína Amiloide A Sérica/metabolismo
6.
Leukemia ; 36(8): 2076-2085, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610346

RESUMEN

Immunoglobulin light chain (AL) amyloidosis is caused by a small, minimally proliferating B-cell/plasma-cell clone secreting a patient-unique, aggregation-prone, toxic light chain (LC). The pathogenicity of LCs is encrypted in their sequence, yet molecular determinants of amyloidogenesis are poorly understood. Higher rates of N-glycosylation among clonal κ LCs from patients with AL amyloidosis compared to other monoclonal gammopathies indicate that this post-translational modification is associated with a higher risk of developing AL amyloidosis. Here, we exploited LC sequence information from previously published amyloidogenic and control clonal LCs and from a series of 220 patients with AL amyloidosis or multiple myeloma followed at our Institutions to define sequence and spatial features of N-glycosylation, combining bioinformatics, biochemical, proteomics, structural and genetic analyses. We found peculiar sequence and spatial pattern of N-glycosylation in amyloidogenic κ LCs, with most of the N-glycosylation sites laying in the framework region 3, particularly within the E strand, and consisting mainly of the NFT sequon, setting them apart with respect to non-amyloidogenic clonal LCs. Our data further support a potential role of N-glycosylation in determining the pathogenic behavior of a subset of amyloidogenic LCs and may help refine current N-glycosylation-based prognostic assessments for patients with monoclonal gammopathies.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Mieloma Múltiple , Amiloidosis/genética , Glicosilación , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Cadenas kappa de Inmunoglobulina/genética , Mieloma Múltiple/genética
7.
FEBS J ; 289(2): 494-506, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482629

RESUMEN

Light-chain (AL) amyloidosis is characterized by deposition of immunoglobulin light chains (LC) as fibrils in target organs. Alongside the full-length protein, abundant LC fragments are always present in AL deposits. Herein, by combining gel-based and mass spectrometry analyses, we identified and compared the fragmentation sites of amyloid LCs from multiple organs of an AL λ amyloidosis patient (AL-55). The positions pinpointed here in kidney and subcutaneous fat, alongside those previously detected in heart of the same patient, were aligned and mapped on the LC's dimeric and fibrillar states. All tissues contain fragmented LCs along with the full-length protein; the fragment pattern is coincident across organs, although microheterogeneity exists. Multiple cleavage positions were detected; some are shared, whereas some are organ-specific, likely due to a complex of proteases. Cleavage sites are concentrated in 'proteolysis-prone' regions, common to all tissues. Several proteolytic sites are not accessible on native dimers, while they are compatible with fibrils. Overall, data suggest that the heterogeneous ensemble of LC fragments originates in tissues and is consistent with digestion of preformed fibrils, or with the hypothesis that initial proteolytic cleavage of the constant domain triggers the amyloidogenic potential of LCs, followed by subsequent proteolytic degradation. This work provides a unique set of molecular data on proteolysis from ex vivo amyloid, which allows discussing hypotheses on role and timing of proteolytic events occurring along amyloid formation and accumulation in AL patients.


Asunto(s)
Neuropatías Amiloides/genética , Amiloide/genética , Proteínas Amiloidogénicas/genética , Amiloidosis/genética , Cadenas Ligeras de Inmunoglobulina/genética , Amiloide/metabolismo , Neuropatías Amiloides/metabolismo , Neuropatías Amiloides/patología , Amiloidosis/metabolismo , Amiloidosis/patología , Endopeptidasas/genética , Humanos , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cinética , Péptido Hidrolasas/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Proteolisis , Termodinámica
8.
Medicina (Kaunas) ; 57(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34577839

RESUMEN

Amyloidoses are characterized by aggregation of proteins into highly ordered amyloid fibrils, which deposit in the extracellular space of tissues, leading to organ dysfunction. In AL (amyloid light chain) amyloidosis, the most common form in Western countries, the amyloidogenic precursor is a misfolding-prone immunoglobulin light chain (LC), which, in the systemic form, is produced in excess by a plasma cell clone and transported to target organs though blood. Due to the primary role that proteins play in the pathogenesis of amyloidoses, mass spectrometry (MS)-based proteomic studies have gained an established position in the clinical management and research of these diseases. In AL amyloidosis, in particular, proteomics has provided important contributions for characterizing the precursor light chain, the composition of the amyloid deposits and the mechanisms of proteotoxicity in target organ cells and experimental models of disease. This review will provide an overview of the major achievements of proteomic studies in AL amyloidosis, with a presentation of the most recent acquisitions and a critical discussion of open issues and ongoing trends.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Amiloide , Amiloidosis/genética , Humanos , Cadenas Ligeras de Inmunoglobulina , Proteómica
9.
J Biol Chem ; 295(49): 16572-16584, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32952127

RESUMEN

Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.


Asunto(s)
Amiloide/química , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Miocardio/metabolismo , Secuencia de Aminoácidos , Amiloide/metabolismo , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Péptidos/análisis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...