Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297966

RESUMEN

In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.

2.
Biochem Biophys Res Commun ; 635: 218-226, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36283334

RESUMEN

Mitochondria play a crucial role in most eukaryotic cells. Mitophagy is a process that controls their quality and quantity within the cells. The outer mitochondrial membrane protein, Atg32, serves as the mitophagic receptor. It interacts with the Atg11 protein to initiate mitophagy and with the Atg8 protein to ensure the engulfment of mitochondria into the autophagosomes for elimination. The Atg32 protein is regulated at the transcriptional level but also by posttranslational modifications. In this study, we described a new regulator of mitophagy, the protein Dep1, identified as a part of the Rpd3L histone deacetylase complex. We showed that the Dep1 protein is localized in the nucleus and associated with mitochondria. This protein is needed for mitophagy and to regulate the transcription and expression of the Atg32 protein. The absence of this protein affects the mitophagy process induced by either starvation for nitrogen or the stationary phase of growth.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Mitofagia , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cells ; 10(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34944049

RESUMEN

Mitophagy, the selective degradation of mitochondria by autophagy, is one of the most important mechanisms of mitochondrial quality control, and its proper functioning is essential for cellular homeostasis. In this review, we describe the most important milestones achieved during almost 2 decades of research on yeasts, which shed light on the molecular mechanisms, regulation, and role of the Atg32 receptor in this process. We analyze the role of ROS in mitophagy and discuss the physiological roles of mitophagy in unicellular organisms, such as yeast; these roles are very different from those in mammals. Additionally, we discuss some of the different tools available for studying mitophagy.


Asunto(s)
Mitofagia , Investigación , Saccharomyces cerevisiae/metabolismo , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
4.
PLoS One ; 15(12): e0241576, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362225

RESUMEN

Mitophagy, the process that degrades mitochondria selectively through autophagy, is involved in the quality control of mitochondria in cells grown under respiratory conditions. In yeast, the presence of the Atg32 protein on the outer mitochondrial membrane allows for the recognition and targeting of superfluous or damaged mitochondria for degradation. Post-translational modifications such as phosphorylation are crucial for the execution of mitophagy. In our study we monitor the stability of Atg32 protein in the yeast S. cerevisiae and show that Atg32 is degraded under normal growth conditions, upon starvation or rapamycin treatment. The Atg32 turnover can be prevented by inhibition of the proteasome activity, suggesting that Atg32 is also ubiquitinated. Mass spectrometry analysis of purified Atg32 protein revealed that at least lysine residue in position 282 is ubiquitinated. Interestingly, the replacement of lysine 282 with alanine impaired Atg32 degradation only partially in the course of cell growth, suggesting that additional lysine residues on Atg32 might also be ubiquitinated. Our results provide the foundation to further elucidate the physiological significance of Atg32 turnover and the interplay between mitophagy and the proteasome.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Mitocondrias/metabolismo , Mitofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Alanina/genética , Alanina/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/aislamiento & purificación , Lisina/genética , Lisina/metabolismo , Membranas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Ubiquitinación/fisiología
5.
Microb Cell ; 6(5): 257-266, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31114795

RESUMEN

The distribution of the pro-apoptotic protein Bax in the outer mi-tochondrial membrane (OMM) is a central point of regulation of apoptosis. It is now widely recognized that parts of the endoplasmic reticulum (ER) are closely associated to the OMM, and are actively involved in different signaling processes. We addressed a possible role of these domains, called Mitochon-dria-Associated Membranes (MAMs) in Bax localization and function, by ex-pressing the human protein in a yeast mutant deleted of MDM34, a ERMES (ER-Mitochondria Encounter Structure) component. By affecting MAMs stabil-ity, the deletion of MDM34 altered Bax mitochondrial localization, and de-creased its capacity to release cytochrome c. Furthermore, the deletion of MDM34 decreased the size of an incompletely released, MAMs-associated pool of cytochrome c.

6.
Cell Mol Life Sci ; 76(8): 1623-1640, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30673821

RESUMEN

The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo , Autofagia/fisiología , Eliminación de Gen , Glucosa/metabolismo , Proteínas de la Membrana/genética , Nitrógeno/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
7.
J Cell Sci ; 132(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510114

RESUMEN

Mitophagy, the selective degradation of mitochondria by autophagy, is a central process that is essential for the maintenance of cell homeostasis. It is implicated in the clearance of superfluous or damaged mitochondria and requires specific proteins and regulators to perform. In yeast, Atg32, an outer mitochondrial membrane protein, interacts with the ubiquitin-like Atg8 protein, promoting the recruitment of mitochondria to the phagophore and their sequestration within autophagosomes. Atg8 is anchored to the phagophore and autophagosome membranes thanks to a phosphatidylethanolamine tail. In Saccharomyces cerevisiae, several phosphatidylethanolamine synthesis pathways have been characterized, but their contribution to autophagy and mitophagy are unknown. Through different approaches, we show that Psd1, the mitochondrial phosphatidylserine decarboxylase, is involved in mitophagy induction only after nitrogen starvation, whereas Psd2, which is located in vacuole, Golgi and endosome membranes, is required preferentially for mitophagy induction in the stationary phase of growth but also to a lesser extent for nitrogen starvation-induced mitophagy. Our results suggest that the mitophagy defect observed in Δpsd1 yeast cells after nitrogen starvation may be due to a failure of Atg8 recruitment to mitochondria.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Carboxiliasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Nitrógeno/deficiencia , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carboxiliasas/genética , Proteínas Mitocondriales/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Inanición , Vacuolas/metabolismo
8.
Sci Rep ; 8(1): 10151, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29977029

RESUMEN

The low levels of methionine in vegetable raw materials represent a limit to their use in aquafeed. Methionine is considered as an important factor in the control of oxidative status. However, restriction of dietary methionine has been shown to reduce generation of mitochondrial oxygen radicals and thus oxidative damage in liver. Here, we aim to evaluate the effect of dietary methionine deficiency in hepatic oxidative status in rainbow trout and identify the underlying mechanisms. Fish were fed for 6 weeks diets containing two different methionine concentrations: deficient (MD, Methionine Deficient diet) or adequate (CTL, control diet). At the end of the experiment, fish fed the MD diet showed a significantly lower body weight and feed efficiency compared to fish fed the CTL diet. Growth reduction of the MD group was associated to a general mitochondrial defect and a concomitant decrease of the oxidative status in the liver. The obtained results also revealed a sharp increase of mitochondrial degradation through mitophagy in these conditions and emphasized the involvement of the PINK1/PARKIN axis in this event. Collectively, these results provide a broader understanding of the mechanisms at play in the reduction of oxidant status upon dietary methionine deficiency.


Asunto(s)
Dieta , Hígado/metabolismo , Metionina/deficiencia , Mitocondrias/metabolismo , Mitofagia , Oncorhynchus mykiss/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal , ADN Mitocondrial/metabolismo , Metabolismo Energético , Factor 2 Eucariótico de Iniciación/metabolismo , Hígado/ultraestructura , Mitocondrias/ultraestructura , Oncorhynchus mykiss/crecimiento & desarrollo , Oxidación-Reducción , Fosforilación Oxidativa , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
Med Sci (Paris) ; 33(3): 231-237, 2017 Mar.
Artículo en Francés | MEDLINE | ID: mdl-28367808

RESUMEN

Mitochondria are highly dynamic organelles that provide essential metabolic functions and represent the major bioenergetic hub of eukaryotic cells. Mitochondrial dysfunctions are implicated in numerous diseases. Therefore, maintenance of a healthy pool of mitochondria is required for cellular function and survival. Mitochondrial quality control is achieved through several mechanisms that act at different levels: proteases and chaperones, the Ubiquitin-Proteasome-System (UPS) and mitophagy. Multiple mitophagy-involved programs operate independently or undergo crosstalk, and require modulated receptor activities at the outer membranes of mitochondria. In mammals, different mitophagy effectors have been characterized such as the receptors NIX, BNIP3, FUNDC1, BCL2L13, cardiolipin and the PINK1/Parkin pathway. Here we discuss the different molecular mechanisms of these mitophagy involved pathways.


Asunto(s)
Mitocondrias/fisiología , Mitofagia/fisiología , Animales , Fenómenos Fisiológicos Celulares , Células Eucariotas/fisiología , Células Eucariotas/ultraestructura , Humanos , Control de Calidad , Ubiquitina-Proteína Ligasas/fisiología
10.
Biochem Biophys Res Commun ; 477(1): 33-39, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27270031

RESUMEN

Macroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles. Here we show that lipid droplet-deprived cells are unable to perform autophagy in response to nitrogen-starvation because of an accelerated lipid synthesis that is not observed with rapamycin. Using cerulenin, a potent inhibitor of fatty acid synthase, and exogenous addition of palmitic acid we could restore nitrogen-starvation induced autophagy in the absence of lipid droplets.


Asunto(s)
Autofagia , Ácidos Grasos/biosíntesis , Metabolismo de los Lípidos , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Autophagy ; 12(2): 343-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26902586

RESUMEN

Monitoring autophagic flux in vivo or in organs remains limited and the ideal methods relative to the techniques possible with cell culture may not exist. Recently, a few papers have demonstrated the feasibility of measuring autophagic flux in vivo by intraperitoneal (IP) injection of pharmacological agents (chloroquine, leupeptin, vinblastine, and colchicine). However, the metabolic consequences of the administration of these drugs remain largely unknown. Here, we report that 0.8 mg/kg/day IP colchicine increased LC3-II protein levels in the liver of fasted trout, supporting the usefulness of this drug for studying autophagic flux in vivo in our model organism. This effect was accompanied by a decrease of plasma glucose concentration associated with a fall in the mRNA levels of gluconeogenesis-related genes. Concurrently, triglycerides and lipid droplets content in the liver increased. In contrast, transcript levels of ß-oxidation-related gene Cpt1a dropped significantly. Together, these results match with the reported role of autophagy in the regulation of glucose homeostasis and intracellular lipid stores, and highlight the importance of considering these effects when using colchicine as an in vivo "autophagometer."


Asunto(s)
Autofagia/efectos de los fármacos , Colchicina/farmacología , Oncorhynchus mykiss/metabolismo , Adenilato Quinasa/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Autofagia/genética , Biomarcadores/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/patología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
12.
FEBS Lett ; 590(1): 13-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26763134

RESUMEN

Bax-dependent mitochondrial permeabilization during apoptosis is controlled by multiple factors, including the phosphorylation by the protein kinase AKT. We used the heterologous co-expression of human Bax and AKT1 in yeast to investigate how the kinase modulates the different steps underlying Bax activation. We found that AKT activated Bax and increased its cellular content. Both effects were dependent on Ser184, but a phosphorylation of this residue did not fully explain the effects of AKT. Additional experiments with mutants substituted on Ser184 suggested that the regulation of Bax dynamic equilibrium between the cytosol and mitochondria might be more tightly regulated by Bcl-xL when Bax is phosphorylated.


Asunto(s)
Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Sustitución de Aminoácidos , Apoptosis , Citosol/enzimología , Citosol/metabolismo , Eliminación de Gen , Haploidia , Humanos , Mitocondrias/enzimología , Mutación , Fosforilación , Fosfoserina/análogos & derivados , Fosfoserina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Proteína X Asociada a bcl-2/agonistas , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/genética , Proteína bcl-X/química , Proteína bcl-X/genética
13.
Int J Biochem Cell Biol ; 64: 167-73, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25882491

RESUMEN

In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.


Asunto(s)
Autofagia , Complejo de la Endopetidasa Proteasomal/fisiología , Proteína 5 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Expresión Génica , Células HCT116 , Células HeLa , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
Int J Biochem Cell Biol ; 64: 136-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25862283

RESUMEN

Bax cytosol-to-mitochondria translocation is a central event of the intrinsic pathway of apoptosis. Bcl-xL is an important regulator of this event and was recently shown to promote the retrotranslocation of mitochondrial Bax to the cytosol. The present study identifies a new aspect of the regulation of Bax localization by Bcl-xL: in addition to its role in Bax inhibition and retrotranslocation, we found that, like with Bcl-2, an increase of Bcl-xL expression levels led to an increase of Bax mitochondrial content. This finding was substantiated both in pro-lymphocytic FL5.12 cells and a yeast reporting system. Bcl-xL-dependent increase of mitochondrial Bax is counterbalanced by retrotranslocation, as we observed that Bcl-xLΔC, which is unable to promote Bax retrotranslocation, was more efficient than the full-length protein in stimulating Bax relocation to mitochondria. Interestingly, cells overexpressing Bcl-xL were more sensitive to apoptosis upon treatment with the BH3-mimetic ABT-737, suggesting that despite its role in Bax inhibition, Bcl-xL also primes mitochondria to permeabilization and cytochrome c release.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Mitocondrias/metabolismo , Nitrofenoles/farmacología , Sulfonamidas/farmacología , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animales , Apoptosis , Línea Celular , Ratones , Piperazinas/farmacología , Multimerización de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae
15.
Autophagy ; 9(11): 1897-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24149061

RESUMEN

It was postulated that mitophagy removes damaged mitochondria, which is critical for proper cellular homeostasis; dysfunctional mitochondria can generate excess reactive oxygen species (ROS) that can further damage the organelle as well as other cellular components. Although proper cell physiology requires the maintenance of a healthy pool of mitochondria, little is known about the mechanism underlying the recognition and selection of damaged organelles. We investigated the cellular fate of mitochondria damaged by the action of oxidative phosphorylation inhibitors (antimycin A, myxothiazol, KCN, oligomycin, CCCP). Only antimycin A and KCN effectively induce nonspecific autophagy, but not mitophagy, in a wild-type strain; however, low or no autophagic activity was measured in strains deficient in genes, including ATG32, ATG11 and BCK1, encoding proteins that are involved in mitophagy. These results provide evidence for a major role of specific mitophagy factors in the control of a general autophagic cellular response induced by mitochondrial alteration. Moreover, significant reduction of cytochrome b, one of the components of the respiratory chain, could be the first signal of this induction pathway.


Asunto(s)
Autofagia/fisiología , Citocromos b/metabolismo , Mitocondrias/fisiología , Mitofagia/fisiología
16.
Int J Biochem Cell Biol ; 45(1): 30-3, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22801005

RESUMEN

This focus makes a case that mitophagy is not a straightforward process obeying simple rules. It is a complex process through which the cell gets rid of both damaged and healthy untainted mitochondria to adjust their amount, and in accordance with cellular energy requirements. Several aspects of mitophagy have been described in both yeast and mammalian cells. They have revealed a number of discrepancies in the regulation of this process in the two eukaryotic models. Data have shown that mitophagy is a function of cell physiology. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.


Asunto(s)
Fenómenos Fisiológicos Celulares , Mitocondrias/fisiología , Mitofagia/fisiología , Animales , Células Eucariotas/fisiología , Humanos
17.
Int J Biochem Cell Biol ; 45(1): 130-40, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22789932

RESUMEN

More and more mutations are found in the mitochondrial DNA of various patients but ascertaining their pathogenesis is often difficult. Due to the conservation of mitochondrial function from yeast to humans, the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and the amenability of the yeast mitochondrial genome to site-directed mutagenesis, yeast is an excellent model for investigating the consequences of specific human mtDNA mutations. Here we report the construction of a yeast model of a point mutation (T8851C) in the mitochondrially-encoded subunit a/6 of the ATP synthase that has been associated with bilateral striatal lesions, a group of rare human neurological disorders characterized by symmetric degeneration of the corpus striatum. The biochemical consequences of this mutation are unknown. The T8851C yeast displayed a very slow growth phenotype on non-fermentable carbon sources, both at 28°C (the optimal temperature for yeast growth) and at 36°C. Mitochondria from T8851C yeast grown in galactose at 28°C showed a 60% deficit in ATP production. When grown at 36°C the rate of ATP synthesis was below 5% that of the wild-type, indicating that heat renders the mutation much more deleterious. At both growth temperatures, the mutant F(1)F(o) complex was correctly assembled but had only very weak ATPase activity (about 10% that of the control), both in mitochondria and after purification. These findings indicate that a block in the proton-translocating domain of the ATP synthase is the primary cause of the neurological disorder in the patients carrying the T8851C mutation. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación Puntual , Levaduras/genética , Secuencia de Aminoácidos , Animales , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa , Consumo de Oxígeno , Levaduras/metabolismo
18.
J Cell Sci ; 126(Pt 2): 415-26, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23230142

RESUMEN

Mitochondria are essential organelles producing most of the energy required for the cell. A selective autophagic process called mitophagy removes damaged mitochondria, which is critical for proper cellular homeostasis; dysfunctional mitochondria can generate excess reactive oxygen species that can further damage the organelle as well as other cellular components. Although proper cell physiology requires the maintenance of a healthy pool of mitochondria, little is known about the mechanism underlying the recognition and selection of damaged organelles. In this study, we investigated the cellular fate of mitochondria damaged by the action of respiratory inhibitors (antimycin A, myxothiazol, KCN) that act on mitochondrial respiratory complexes III and IV, but have different effects with regard to the production of reactive oxygen species and increased levels of reduced cytochromes. Antimycin A and potassium cyanide effectively induced nonspecific autophagy, but not mitophagy, in a wild-type strain of Saccharomyces cerevisiae; however, low or no autophagic activity was measured in strains deficient for genes that encode proteins involved in mitophagy, including ATG32, ATG11 and BCK1. These results provide evidence for a major role of specific mitophagy factors in the control of a general autophagic cellular response induced by mitochondrial alteration. Moreover, increased levels of reduced cytochrome b, one of the components of the respiratory chain, could be the first signal of this induction pathway.


Asunto(s)
Autofagia/fisiología , Citocromos b/metabolismo , Mitocondrias/fisiología , Mitofagia/fisiología , Antimicina A/farmacología , Autofagia/efectos de los fármacos , Metacrilatos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Tiazoles/farmacología
19.
Free Radic Biol Med ; 56: 9-16, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23220263

RESUMEN

The Saccharomyces cerevisiae homolog of the ATP-dependent Lon protease, Pim1p, is essential for mitochondrial protein quality control, DNA maintenance, and respiration. Here, we demonstrate that Pim1p activity declines in aging cells and that Pim1p deficiency shortens the replicative life span of yeast mother cells. This accelerated aging of pim1Δ cells is accompanied by elevated cytosolic levels of oxidized and aggregated proteins, as well as reduced proteasome activity. Overproduction of Hsp104p greatly diminishes aggregation of oxidized cytosolic proteins, rescues proteasome activity, and restores life span of pim1Δ cells to near wild-type levels. Our results show that defects in mitochondrial protein quality control have global intracellular effects leading to the increased generation of misfolded proteins and cytosolic protein aggregates, which are linked to a decline in replicative potential.


Asunto(s)
Proteasas ATP-Dependientes/genética , Eliminación de Gen , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Serina Endopeptidasas/genética , Saccharomyces cerevisiae/genética , Factores de Tiempo
20.
FEBS Lett ; 586(2): 116-21, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22198199

RESUMEN

The role of the mitochondrial protein receptor Tom22p in the interaction of pro-apoptotic protein Bax with yeast mitochondria was investigated. Co-immunoprecipitation assays showed that human Bax interacted with different TOM subunits, including Tom22p. Expression of the cytosolic receptor domain of human Tom22 increased Bax mitochondrial localization, but decreased the proportion of active Bax. BN-PAGE showed that the cytosolic domain of Tom22 interfered with the oligomerization of Bax. These data suggest that the interaction with the cytosolic domain of Tom22 helps Bax to acquire a conformation able to interact with the outer mitochondrial membrane.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Levaduras/metabolismo , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Citosol/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Unión Proteica/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...