Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2550-2557, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659220

RESUMEN

Acidification of the airway surface liquid in the respiratory system could play a role in the pathology of Cystic Fibrosis, but its low volume and proximity to the airway epithelium make it a challenging biological environment in which to noninvasively collect pH measurements. To address this challenge, we explored surface enhanced Raman scattering microsensors (SERS-MS), with a 4-mercaptobenzoic acid (MBA) pH reporter molecule, as pH sensors for the airway surface liquid of patient-derived in vitro models of the human airway. Using air-liquid interface (ALI) cultures to model the respiratory epithelium, we show that SERS-MS facilitates the optical measurement of trans-epithelial pH gradients between the airway surface liquid and the basolateral culture medium. SERS-MS also enabled the successful quantification of pH changes in the airway surface liquid following stimulation of the Cystic Fibrosis transmembrane conductance regulator (CFTR, the apical ion channel that is dysfunctional in Cystic Fibrosis airways). Finally, the influence of CFTR mutations on baseline airway surface liquid pH was explored by using SERS-MS to measure the pH in ALIs grown from Cystic Fibrosis and non-Cystic Fibrosis donors.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Concentración de Iones de Hidrógeno , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Compuestos de Sulfhidrilo/química , Benzoatos/química
2.
Chem Commun (Camb) ; 59(22): 3249-3252, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36815668

RESUMEN

Patient derived organoids have the potential to improve the physiological relevance of in vitro disease models. However, the 3D architecture of these self-assembled cellular structures makes probing their biochemistry more complex than in traditional 2D culture. We explore the application of surface enhanced Raman scattering microsensors (SERS-MS) to probe local pH gradients within patient derived airway organoid cultures. SERS-MS consist of solid polymer cores decorated with surface immobilised gold nanoparticles which are functionalised with pH sensitive reporter molecule 4-mercaptobenzoic acid (MBA). We demonstrate that by mixing SERS-MS into the extracellular matrix (ECM) of airway organoid cultures the probes can be engulfed by expanding organoids and report on local pH in the organoid lumen and ECM.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro/química , Nanopartículas del Metal/química , Células Madre , Organoides/metabolismo , Matriz Extracelular , Espectrometría Raman , Concentración de Iones de Hidrógeno
3.
Anal Chem ; 93(41): 13844-13851, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609126

RESUMEN

Extracellular pH (pHe) is an important chemical factor in many cellular processes and disease pathologies. The routine sampling of pHe in vitro could lead to innovative advances in therapeutics. To this end, we have fabricated a novel gold-coated polymer mesh, which facilitates the real-time measurement of pHe via surface-enhanced Raman scattering (SERS). In this proof of concept study, we apply our SERS sensor to measure metabolically induced changes in the pHe of carcinoma-derived cell line HepG2/C3A. We demonstrate that gold-coated polyurethane electrospun nanofibers (AuNF) have strong and reproducible SERS spectra of surface-adsorbed analytes. By functionalizing AuNF with pH-responsive reporter 4-mercaptobenzoic acid (MBA), we have developed an accurate pH SERS sensor for the extracellular microenvironment. We cultured HepG2/C3A on the surface of MBA-AuNF and measured an acidic shift in pHe at the cell-fiber interface. Following exposure to staurosporine, an apoptosis-inducing drug, we observed changes in the HepG2/C3A cellular morphology indicative of controlled cell death, and detected an increase in the pHe of HepG2/C3A. These results demonstrate how subtle changes in pHe, induced by the metabolic activity of cells, can be measured with our novel SERS sensor MBA-AuNF. The excellent pH measurement performance of MBA-AuNF provides a unique platform to study extracellular pH on the microscale and will help to deepen our understanding of pHe in disease pathology.


Asunto(s)
Nanopartículas del Metal , Microambiente Celular , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/toxicidad , Polímeros , Espectrometría Raman , Mallas Quirúrgicas
4.
ACS Appl Mater Interfaces ; 13(43): 51504-51518, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672514

RESUMEN

Development of wearable sensing platforms is essential for the advancement of continuous health monitoring and point-of-care testing. Eccrine sweat pH is an analyte that can be noninvasively measured and used to diagnose and aid in monitoring a wide range of physiological conditions. Surface-enhanced Raman scattering (SERS) offers a rapid, optical technique for fingerprinting of biomarkers present in sweat. In this paper, a mechanically flexible, nanofibrous, SERS-active substrate was fabricated by a combination of electrospinning of thermoplastic polyurethane (TPU) and Au sputter coating. This substrate was then investigated for suitability toward wearable sweat pH sensing after functionalization with two commonly used pH-responsive molecules, 4-mercaptobenzoic acid (4-MBA), and 4-mercaptopyridine (4-MPy). The developed SERS pH sensor was found to have good resolution (0.14 pH units for 4-MBA; 0.51 pH units for 4-MPy), with only 1 µL of sweat required for a measurement, and displayed no statistically significant difference in performance after 35 days (p = 0.361). Additionally, the Au/TPU nanofibrous SERS pH sensors showed fast sweat-absorbing ability as well as good repeatability and reversibility. The proposed methodology offers a facile route for the fabrication of SERS substrates which could also be used to measure a wide range of health biomarkers beyond sweat pH.


Asunto(s)
Técnicas Biosensibles , Oro/química , Nanofibras/química , Poliuretanos/química , Sudor/química , Dispositivos Electrónicos Vestibles , Humanos , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Espectrometría Raman
5.
Anal Chem ; 93(43): 14375-14382, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34677947

RESUMEN

Cocrystals are important molecular adducts that have many advantages as a means of modifying the physicochemical properties of active pharmaceutical ingredients, including taste masking and improved solubility, bioavailability, and stability. As a result, the discovery of new cocrystals is of great interest to commercial drug discovery programs. Time-consuming manual analysis of the large volumes of data that emerge from large-scale cocrystal screening programs of up to 1000s of preparations poses a challenge. Raman spectroscopy has been shown to discriminate between cocrystals and physical mixtures and is easy to automate, allowing rapid screening of large numbers of potential cocrystals, but the spectral features that encode the information are often subtle (e.g., slight changes in peak positions or intensities). We have employed an automated signal processing routine based on a sparse decomposition algorithm to speed up the data processing steps while maintaining the accuracy of a trained spectroscopist. We used our algorithm to screen 31 potential cocrystal preparations and found that through the use of a computationally generated threshold, we could achieve a clear classification of cocrystals and physical mixtures in less than a minute, compared to several hours manually.


Asunto(s)
Preparaciones Farmacéuticas , Espectrometría Raman , Disponibilidad Biológica , Cristalización , Solubilidad
6.
Opt Lett ; 46(17): 4104-4107, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469950

RESUMEN

Significant improvements in time-correlated single photon counting (TCSPC) Raman spectroscopy acquisition times can be achieved through exploitation of megahertz (MHz) laser repetition rates. We have developed a TCSPC Raman spectroscopy system based on a high peak power (>40W) pulsed laser, a high pulse repetition rate (40 MHz), a custom f/1.5 spectrometer, and a 512 spectral channel × 16 time bin single photon avalanche diode line sensor. We report millisecond Raman spectrum acquisition times, a peak Raman count rate of 104 kcps, and a linewidth aggregated count rate of 440 kcps with a diamond sample. This represents a three-order-of-magnitude increase in measured Raman count rate in comparison with a 104 kHz pulsed laser operating at 300 W and a four-order-of-magnitude increase over a 0.1 W pulsed laser operating at 40 MHz. A Raman-to-fluorescence ratio of 4.76 is achieved with a sesame oil sample at a 20 MHz repetition rate. Achieving high count rates and Raman-to-fluorescence ratios unlocks the potential of combined Raman/fluorescence lifetime spectroscopy for imaging and other short acquisition time applications.

7.
Hepatology ; 74(4): 2310-2311, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33938014
8.
Hepatology ; 74(1): 428-443, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33420756

RESUMEN

BACKGROUND AND AIMS: Liver graft quality is evaluated by visual inspection prior to transplantation, a process highly dependent on the surgeon's experience. We present an objective, noninvasive, quantitative way of assessing liver quality in real time using Raman spectroscopy, a laser-based tool for analyzing biomolecular composition. APPROACH AND RESULTS: A porcine model of donation after circulatory death (DCD) with normothermic regional perfusion (NRP) allowed assessment of liver quality premortem, during warm ischemia (WI) and post-NRP. Ten percent of circulating blood volume was removed in half of experiments to simulate blood recovery for DCD heart removal. Left median lobe biopsies were obtained before circulatory arrest, after 45 minutes of WI, and after 2 hours of NRP and analyzed using spontaneous Raman spectroscopy, stimulated Raman spectroscopy (SRS), and staining. Measurements were also taken in situ from the porcine liver using a handheld Raman spectrometer at these time points from left median and right lateral lobes. Raman microspectroscopy detected congestion during WI by measurement of the intrinsic Raman signal of hemoglobin in red blood cells (RBCs), eliminating the need for exogenous labels. Critically, this microvascular damage was not observed during WI when 10% of circulating blood was removed before cardiac arrest. Two hours of NRP effectively cleared RBCs from congested livers. Intact RBCs were visualized rapidly at high resolution using SRS. Optical properties of ischemic livers were significantly different from preischemic and post-NRP livers as measured using a handheld Raman spectrometer. CONCLUSIONS: Raman spectroscopy is an effective tool for detecting microvascular damage which could assist the decision to use marginal livers for transplantation. Reducing the volume of circulating blood before circulatory arrest in DCD may help reduce microvascular damage.


Asunto(s)
Selección de Donante/métodos , Paro Cardíaco/fisiopatología , Isquemia/diagnóstico , Hígado/irrigación sanguínea , Espectrometría Raman , Animales , Modelos Animales de Enfermedad , Estudios de Factibilidad , Humanos , Isquemia/fisiopatología , Trasplante de Hígado , Preservación de Órganos , Perfusión , Porcinos , Isquemia Tibia
9.
J Cyst Fibros ; 19(2): 203-210, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31501051

RESUMEN

BACKGROUND: Defective macrophage phagolysosomal acidification is implicated in numerous lung diseases including Cystic Fibrosis (CF) and may contribute to defective pathogen killing. Conflicting reports relating to phagolysosomal pH in CF macrophages have been published, in part related to the use of pH-sensitive fluorescent probes where potential inadequacies in experimental design can be a contributing factor (e.g. employing probes with incorrect pKa for the cellular compartment of interest). We developed a reliable method to quantify macrophage phagolysosomal pH using surface-enhanced Raman spectroscopy-based nanosensors. METHODS: Monocyte-derived macrophages from CF and healthy control participants were incubated with nanosensors. Live cell imaging identified phagocytosed nanosensors, and surface-enhanced Raman spectroscopy was performed using para-mercaptobenzoic acid functionalised gold nanoparticles which produce Raman spectra that change predictably with their environmental pH. Conventional fluorescence spectroscopy was carried out in comparison. Nanosensor localisation to phagolysosomes was confirmed by transmission electron microscopy. RESULTS: Nanosensors were actively phagocytosed by macrophages into phagolysosomes and acidification occurred rapidly and remained stable for at least 60 min. There was no difference in phagolysosomal pH between healthy control and CF macrophages (5.41 ±â€¯0.11 vs. 5.41 ±â€¯0.20, p > .9999), further confirmed by inhibiting Cystic Fibrosis Transmembrane Conductance Regulator in healthy control monocyte-derived macrophages. CONCLUSIONS: Optical nanosensors accurately measure macrophage phagolysosomal pH and demonstrate no phagolysosomal acidification defect in human CF monocyte-derived macrophages. Further studies using alveolar macrophages could extend the impact of our findings. Nanosensors represent a novel and precise means to measure organelle functions with widespread potential for the study and monitoring of several lung diseases.


Asunto(s)
Fibrosis Quística , Macrófagos Alveolares , Fagosomas , Espectrometría Raman , Adulto , Fenómenos Bioquímicos , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Colorantes Fluorescentes , Humanos , Concentración de Iones de Hidrógeno , Macrófagos Alveolares/química , Macrófagos Alveolares/fisiología , Masculino , Nanopartículas del Metal , Nanotecnología/instrumentación , Nanotecnología/métodos , Fagocitosis , Fagosomas/química , Fagosomas/microbiología , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos
10.
Proc Natl Acad Sci U S A ; 116(39): 19753-19759, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31506353

RESUMEN

Hypoxia is a ubiquitous feature of cancers, encouraging glycolytic metabolism, proliferation, and resistance to therapy. Nonetheless, hypoxia is a poorly defined term with confounding features described in the literature. Redox biology provides an important link between the external cellular microenvironment and the cell's response to changing oxygen pressures. In this paper, we demonstrate a correlation between intracellular redox potential (measured using optical nanosensors) and the concentrations of microRNAs (miRNAs) involved in the cell's response to changes in oxygen pressure. The correlations were established using surprisal analysis (an approach derived from thermodynamics and information theory). We found that measured redox potential changes reflect changes in the free energy computed by surprisal analysis of miRNAs. Furthermore, surprisal analysis identified groups of miRNAs, functionally related to changes in proliferation and metastatic potential that played the most significant role in the cell's response to changing oxygen pressure.


Asunto(s)
Hipoxia de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Citoplasma/metabolismo , Humanos , Hipoxia/metabolismo , Células MCF-7/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno , Termodinámica , Microambiente Tumoral/genética
11.
Anal Chem ; 91(15): 9522-9529, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31265253

RESUMEN

Multicellular tumor spheroids (MTS) are a well-established model system for drug development and are a valuable in vitro research tool for use prior to employing animal models. These 3D-cell cultures are thought to display chemical gradients of oxygen and nutrients throughout their structure, giving rise to distinct microenvironments in radial layers, thus, mimicking the pathophysiological environment of a tumor. Little is known about the localized distributions of metabolites within these microenvironments. To address this, here we utilize high spectral resolution Fourier-transform ion cyclotron resonance (FT-ICR), MALDI mass spectrometry imaging (MSI) to image the distribution of endogenous metabolites in breast cancer MCF-7 spheroids. We show that known specific metabolite markers (adenosine phosphates and glutathione) indicate that the central region of these cell culture models experiences increased hypoxic and oxidative stress. By using discriminatory analysis, we have identified which m/z values localize toward the outer proliferative or central hypoxic regions of an MTS. Elemental formulae were assigned with sub-ppm mass accuracy, allowing metabolite assignment. Using this information, we have mapped these metabolites back to distinct pathways to improve our understanding of the molecular environment and biochemistry of these tumor models.


Asunto(s)
Esferoides Celulares/metabolismo , Microambiente Tumoral , Biomarcadores de Tumor , Ciclotrones , Análisis de Fourier , Humanos , Células MCF-7 , Metabolómica
12.
J Biophotonics ; 12(5): e201800201, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30246380

RESUMEN

There has been increasing use of in vitro cell culture models that more realistically replicate the three-dimensional (3D) environment found in vivo. Multicellular tumor spheroids (MTS) using cell lines or patient-derived organoids have become an important in vitro drug development tool, where cells are grown in a 3D "sphere" that exhibits many of the characteristics found in vivo. Significantly, MTS develop gradients in nutrients and oxygen, commonly found in tumors that contribute to therapy resistance. While MTS show promise as a more realistic in vitro culture model, there is a massive need to improve imaging technologies for assessing biochemical characteristics and drug response in such models to maximize their translation into useful applications such as high throughput screening (HTS). In this study, we investigate the potential for Raman spectroscopy to unveil biochemical information in MTS and have investigated how spheroid age influences drug response, shedding light on increased therapy resistance in developing tumors. The wealth of molecular level information delivered by Raman spectroscopy in a noninvasive manner, could aid translation of these 3D models into HTS applications.


Asunto(s)
Envejecimiento/patología , Espectrometría Raman , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Estaurosporina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imagenología Tridimensional , Células MCF-7 , Esferoides Celulares/metabolismo
13.
J Biophotonics ; 12(3): e201800239, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30353666

RESUMEN

Measuring Raman spectra through an optical fibre is usually complicated by the high intrinsic Raman scatter of the fibre material. Common solutions such as the use of multiple fibres and distal optics are complex and bulky. We demonstrate the use of single novel hollow-core negative-curvature fibres (NCFs) for Raman and surface-enhanced Raman spectroscopy (SERS) sensing using no distal optics. The background Raman emission from the silica in the NCF was at least 1000× smaller than in a conventional solid fibre, while maintaining the same collection efficiency. We transmitted pump light from a 785-nm laser through the NCF, and we collected back the weak Raman spectra of different distal samples, demonstrating the fibre probe can be used for measurements of weak Raman and SERS signals that would otherwise overlap spectrally with the silica background. The lack of distal optics and consequent small probe diameter (<0.25 mm) enable applications that were not previously possible.


Asunto(s)
Relación Señal-Ruido , Espectrometría Raman/métodos , Dióxido de Silicio/química , Espectrometría Raman/instrumentación
14.
Analyst ; 143(24): 5918-5925, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30289143

RESUMEN

The exploitation of fibre based Raman probes has been challenged by often complicated fabrication procedures and difficulties in reproducibility. Here, we have demonstrated a simple and cost-effective approach for sensing pH through an optical fibre, by employing a wax patterned filter paper-based substrate for surface enhanced Raman spectroscopy (SERS). Through this method, high reproducibility between fibres was achieved. In addition to sensing pH, it was possible to extract fluid samples containing P. aeruginosa for further analysis. This dual purpose fibre is bronchoscope deployable, and is able to gather information about both the host and pathogen, which may lead to an improved treatment plan in future in vivo applications.


Asunto(s)
Fibras Ópticas , Papel , Pseudomonas aeruginosa/aislamiento & purificación , Espectrometría Raman/métodos , Oro/química , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Nanopartículas del Metal/química , Microscopía Confocal/métodos , Porosidad , Espectrometría Raman/instrumentación
15.
Anal Chem ; 90(15): 8742-8749, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29863333

RESUMEN

Successful matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) relies on the selection of the most appropriate matrix and optimization of the matrix application parameters. In order to achieve reproducible high spatial-resolution imaging data, several commercially available automated matrix application platforms have become available. However, the high cost of these commercial matrix sprayers is restricting access into this emerging research field. Here, we report an automated platform for matrix deposition, employing a converted commercially available 3D printer ($300) and other parts commonly found in an analytical chemistry lab as a low-cost alternative to commercial sprayers. Using printed fluorescent rhodamine B microarrays and employing experimental design, the matrix deposition parameters were optimized to minimize surface analyte diffusion. Finally, the optimized matrix application method was applied to image three-dimensional MCF-7 cell culture spheroid sections (ca. 500 µm diameter tissue samples) and sections of mouse brain. Using this system, we demonstrate robust and reproducible observations of endogenous metabolite and steroid distributions with a high spatial resolution.


Asunto(s)
Imagenología Tridimensional/instrumentación , Imagen Óptica/instrumentación , Impresión Tridimensional/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Animales , Química Encefálica , Diseño de Equipo , Humanos , Imagenología Tridimensional/métodos , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Imagen Óptica/métodos , Rodaminas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
ACS Nano ; 11(5): 4542-4552, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28443337

RESUMEN

The development of engineered nanomaterials is growing exponentially, despite concerns over their potential similarities to environmental nanoparticles that are associated with significant cardiorespiratory morbidity and mortality. The mechanisms through which inhalation of nanoparticles could trigger acute cardiovascular events are emerging, but a fundamental unanswered question remains: Do inhaled nanoparticles translocate from the lung in man and directly contribute to the pathogenesis of cardiovascular disease? In complementary clinical and experimental studies, we used gold nanoparticles to evaluate particle translocation, permitting detection by high-resolution inductively coupled mass spectrometry and Raman microscopy. Healthy volunteers were exposed to nanoparticles by acute inhalation, followed by repeated sampling of blood and urine. Gold was detected in the blood and urine within 15 min to 24 h after exposure, and was still present 3 months after exposure. Levels were greater following inhalation of 5 nm (primary diameter) particles compared to 30 nm particles. Studies in mice demonstrated the accumulation in the blood and liver following pulmonary exposure to a broader size range of gold nanoparticles (2-200 nm primary diameter), with translocation markedly greater for particles <10 nm diameter. Gold nanoparticles preferentially accumulated in inflammation-rich vascular lesions of fat-fed apolipoproteinE-deficient mice. Furthermore, following inhalation, gold particles could be detected in surgical specimens of carotid artery disease from patients at risk of stroke. Translocation of inhaled nanoparticles into the systemic circulation and accumulation at sites of vascular inflammation provides a direct mechanism that can explain the link between environmental nanoparticles and cardiovascular disease and has major implications for risk management in the use of engineered nanomaterials.


Asunto(s)
Nanopartículas del Metal/administración & dosificación , Enfermedades Vasculares/metabolismo , Administración por Inhalación , Adulto , Animales , Oro , Voluntarios Sanos , Humanos , Pulmón/patología , Masculino , Ratones , Nanopartículas , Nanoestructuras/análisis , Tamaño de la Partícula , Enfermedades Vasculares/terapia
18.
NPJ Regen Med ; 2: 12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302348

RESUMEN

The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.

19.
Analyst ; 141(20): 5900, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27704094

RESUMEN

Correction for 'Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors' by Victoria L. Camus, et al., Analyst, 2016, 141, 5056-5061.

20.
Nanoscale ; 8(37): 16710-16718, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27714168

RESUMEN

Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function. The magnitude of the redox potential gradient can be quantified as a free energy difference (ΔG) and used as a measurement of MTS viability. We found that by delivering different doses of radiotherapy to MTS we could correlate loss of ΔG with increasing therapeutic dose. In addition, we found that resistance to drug therapy was indicated by an increase in ΔG. This robust and reproducible technique allows interrogation of an in vitro tumor-model's bioenergetic response to therapy, indicating its potential as a tool for therapy development.


Asunto(s)
Nanoestructuras , Neoplasias/química , Espectrometría Raman , Esferoides Celulares/química , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Oxidación-Reducción , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...