Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Phys Rev E ; 108(3-2): 035209, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849111

RESUMEN

Laser-direct-drive fusion target designs with solid deuterium-tritium (DT) fuel, a high-Z gradient-density pusher shell (GDPS), and a Au-coated foam layer have been investigated through both 1D and 2D radiation-hydrodynamic simulations. Compared with conventional low-Z ablators and DT-push-on-DT targets, these GDPS targets possess certain advantages of being instability-resistant implosions that can be high adiabat (α≥8) and low hot-spot and pusher-shell convergence (CR_{hs}≈22 and CR_{PS}≈17), and have a low implosion velocity (v_{imp}<3×10^{7}cm/s). Using symmetric drive with laser energies of 1.9 to 2.5MJ, 1D lilac simulations of these GDPS implosions can result in neutron yields corresponding to ≳50-MJ energy, even with reduced laser absorption due to the cross-beam energy transfer (CBET) effect. Two-dimensional draco simulations show that these GDPS targets can still ignite and deliver neutron yields from 4 to ∼10MJ even if CBET is present, while traditional DT-push-on-DT targets normally fail due to the CBET-induced reduction of ablation pressure. If CBET is mitigated, these GDPS targets are expected to produce neutron yields of >20MJ at a driven laser energy of ∼2MJ. The key factors behind the robust ignition and moderate energy gain of such GDPS implosions are as follows: (1) The high initial density of the high-Z pusher shell can be placed at a very high adiabat while the DT fuel is maintained at a relatively low-entropy state; therefore, such implosions can still provide enough compression ρR>1g/cm^{2} for sufficient confinement; (2) the high-Z layer significantly reduces heat-conduction loss from the hot spot since thermal conductivity scales as ∼1/Z; and (3) possible radiation trapping may offer an additional advantage for reducing energy loss from such high-Z targets.

2.
Phys Rev Lett ; 131(1): 015102, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478441

RESUMEN

In the dynamic-shell (DS) concept [V. N. Goncharov et al., Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres, Phys. Rev. Lett. 125, 065001 (2020).PRLTAO0031-900710.1103/PhysRevLett.125.065001] for laser-driven inertial confinement fusion the deuterium-tritium fuel is initially in the form of a homogeneous liquid inside a wetted-foam spherical shell. This fuel is ignited using a conventional implosion, which is preceded by a initial compression of the fuel followed by its expansion and dynamic formation of a high-density fuel shell with a low-density interior. This Letter reports on a scaled-down, proof-of-principle experiment on the OMEGA laser demonstrating, for the first time, the feasibility of DS formation. A shell is formed by convergent shocks launched by laser pulses at the edge of a plasma sphere, with the plasma itself formed as a result of laser-driven compression and relaxation of a surrogate plastic-foam ball target. Three x-ray diagnostics, namely, 1D spatially resolved self-emission streaked imaging, 2D self-emission framed imaging, and backlighting radiography, have shown good agreement with the predicted evolution of the DS and its stability to low Legendre mode perturbations introduced by laser irradiation and target asymmetries.

3.
Phys Rev E ; 106(5-2): 055204, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559374

RESUMEN

Target preheat by superthermal electrons from laser-plasma instabilities is a major obstacle to achieving thermonuclear ignition via direct-drive inertial confinement fusion at the National Ignition Facility (NIF). Polar-direct-drive surrogate plastic implosion experiments were performed on the NIF to quantify preheat levels at an ignition-relevant scale and develop mitigation strategies. The experiments were used to infer the hot-electron temperature, energy fraction, and divergence, and to directly measure the spatial hot-electron energy deposition profile inside the imploding shell. Silicon layers buried in the ablator are shown to mitigate the growth of laser-plasma instabilities and reduce preheat, providing a promising path forward for ignition designs at an on-target intensity of about 10^{15}W/cm^{2}.

4.
Rev Sci Instrum ; 93(10): 105102, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319381

RESUMEN

A platform has been developed to study laser-direct-drive energy coupling at the National Ignition Facility (NIF) using a plastic sphere target irradiated in a polar-direct-drive geometry to launch a spherically converging shock wave. To diagnose this system evolution, eight NIF laser beams are directed onto a curved Cu foil to generate Heα line emission at a photon energy of 8.4 keV. These x rays are collected by a 100-ps gated x-ray imager in the opposing port to produce temporally gated radiographs. The platform is capable of acquiring images during and after the laser drive launches the shock wave. A backlighter profile is fit to the radiographs, and the resulting transmission images are Abel inverted to infer radial density profiles of the shock front and to track its temporal evolution. The measurements provide experimental shock trajectories and radial density profiles that are compared to 2D radiation-hydrodynamic simulations using cross-beam energy transfer and nonlocal heat-transport models.

5.
Sci Total Environ ; 851(Pt 2): 158062, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35981579

RESUMEN

Understanding boreal/hemi-boreal forest growth sensitivity to seasonal variations in temperature and water availability provides important basis for projecting the potential impacts of climate change on the productivity of these ecosystems. Our best available information currently comes from a limited number of field experiments and terrestrial biosphere model (TBM) simulations of varying predictive accuracy. Here, we assessed the sensitivity of annual boreal/hemi-boreal forest growth in Canada to yearly fluctuations in seasonal climate variables using a large tree-ring dataset and compared this to the climate sensitivity of annual net primary productivity (NPP) estimates obtained from fourteen TBMs. We found that boreal/hemi-boreal forest growth sensitivity to fluctuations in seasonal temperature and precipitation variables changed along a southwestern to northeastern gradient, with growth limited almost entirely by temperature in the northeast and west and by water availability in the southwest. We also found a lag in growth climate sensitivity, with growth largely determined by the climate during the summer prior to ring formation. Analyses of NPP sensitivity to the same climate variables produced a similar southwest to northeast gradient in growth climate sensitivity for NPP estimates from all but three TBMs. However, analyses of growth from tree-ring data and analyses of NPP from TBMs produced contrasting evidence concerning the key climate variables limiting growth. While analyses of NPP primarily indicated a positive relationship between growth and seasonal temperature, tree-ring analyses indicated negative growth relationships to temperature. Also, the positive effect of precipitation on NPP derived from most TBMs was weaker than the positive effect of precipitation on tree-ring based growth: temperature had a more important limiting effect on NPP than tree-ring data indicated. These mismatches regarding the key climate variables limiting growth suggested that characterization of tree growth in TBMs might need revision, particularly regarding the effects of stomatal conductance and carbohydrate reserve dynamics.


Asunto(s)
Taiga , Árboles , Bosques , Ecosistema , Canadá , Cambio Climático , Agua , Carbohidratos
6.
Phys Rev E ; 106(1): L013201, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974626

RESUMEN

In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration. We apply this model to hot-spot x-ray measurements of direct-drive cryogenic implosions typical of the direct-drive designs with best ignition metrics. The comparison of the measured x-ray and neutron yields indicates that hot-spot mix, if present, is below a sensitivity estimated as ∼2% by-atom mix of ablator plastic into the hot spot.

7.
Phys Rev Lett ; 128(19): 195002, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622051

RESUMEN

This Letter presents the first observation on how a strong, 500 kG, externally applied B field increases the mode-two asymmetry in shock-heated inertial fusion implosions. Using a direct-drive implosion with polar illumination and imposed field, we observed that magnetization produces a significant increase in the implosion oblateness (a 2.5× larger P2 amplitude in x-ray self-emission images) compared with reference experiments with identical drive but with no field applied. The implosions produce strongly magnetized electrons (ω_{e}τ_{e}≫1) and ions (ω_{i}τ_{i}>1) that, as shown using simulations, restrict the cross field heat flow necessary for lateral distribution of the laser and shock heating from the implosion pole to the waist, causing the enhanced mode-two shape.

8.
Phys Rev Lett ; 127(10): 105001, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533333

RESUMEN

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.

9.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397224

RESUMEN

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

10.
Phys Rev E ; 103(6-1): 063208, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271736

RESUMEN

As an alternative inertial confinement fusion scheme, shock ignition requires a strong converging shock driven by a high-intensity laser pulse to ignite a precompressed fusion capsule. Understanding nonlinear laser-plasma instabilities is crucial to assess and improve the laser-shock energy coupling. Recent experiments conducted on the OMEGA EP laser facility have demonstrated that such instabilities can ∼100% deplete the first 0.5 ns of the high-intensity laser. Analyses of the observed laser-generated blast wave suggest that this pump-depletion starts at ∼0.02 critical density and progresses to 0.1-0.2 critical density, which is also confirmed by the time-resolved stimulated Raman backscattering spectra. The pump-depletion dynamics can be explained by the breaking of ion-acoustic waves in stimulated Brillouin scattering. Such pump depletion would inhibit the collisional laser energy absorption but may benefit the generation of hot electrons with moderate temperatures for electron shock ignition [Phys. Rev. Lett. 119, 195001 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.195001].

11.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200052, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280559

RESUMEN

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text], the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

12.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280561

RESUMEN

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

13.
Phys Rev Lett ; 125(6): 065001, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32845678

RESUMEN

A new class of ignition designs is proposed for inertial confinement fusion experiments. These designs are based on the hot-spot ignition approach, but instead of a conventional target that is comprised of a spherical shell with a thin frozen deuterium-tritium (DT) layer, a liquid DT sphere inside a wetted-foam shell is used, and the lower-density central region and higher-density shell are created dynamically by appropriately shaping the laser pulse. These offer several advantages, including simplicity in target production (suitable for mass production for inertial fusion energy), absence of the fill tube (leading to a more-symmetric implosion), and lower sensitivity to both laser imprint and physics uncertainty in shock interaction with the ice-vapor interface. The design evolution starts by launching an ∼1-Mbar shock into a DT sphere. After bouncing from the center, the reflected shock reaches the outer surface of the sphere and the shocked material starts to expand outward. Supporting ablation pressure ultimately stops such expansion and subsequently launches a shock toward the target center, compressing the ablator and fuel, and forming a shell. The shell is then accelerated and fuel is compressed by appropriately shaping the drive laser pulse, forming a hot spot using the conventional or shock ignition approaches. This Letter demonstrates the feasibility of the new concept using hydrodynamic simulations and discusses the advantages and disadvantages of the concept compared with more-traditional inertial confinement fusion designs.

14.
Phys Rev E ; 101(6-1): 063207, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688486

RESUMEN

A target design for mitigating the Rayleigh-Taylor instability is proposed for use in high energy density and direct-drive inertial confinement fusion experiments. In this scheme, a thin gold membrane is offset from the main target by several-hundred microns. A strong picket on the drive beams is incident upon this membrane to produce x rays which generate the initial shock through the target. The main drive follows shortly thereafter, passing through the ablated shell and directly driving the main target. The efficacy of this scheme is demonstrated through experiments performed at the OMEGA EP facility, showing a reduction of the Rayleigh-Taylor instability growth which scales exponentially with frequency, suppressing development by at least a factor of 5 for all wavelengths below 100 µm. This results in a delay in the time of target perforation by ∼40%.

15.
Phys Rev E ; 100(3-1): 033201, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31640008

RESUMEN

Laser imprinting possesses a potential danger for low-adiabat and high-convergence implosions in direct-drive inertial confinement fusion (ICF). Within certain direct-drive ICF schemes, a laser picket (prepulse) is used to condition the target to increase the interaction efficiency with the main pulse. Whereas initially the target is in a solid state (of ablators such as polystyrene) with specific electronic and optical properties, the current state-of-the-art hydrocodes assume an initial plasma state, which ignores the detailed plasma formation process. To overcome this strong assumption, a model describing the solid-to-plasma transition, eventually aiming at being implemented in hydrocodes, is developed. It describes the evolution of main physical quantities of interest, including the free electron density, collision frequency, absorbed laser energy, temperatures, and pressure, during the first stage of the laser-matter interaction. The results show that a time about 100 ps is required for the matter to undergo the phase transition, the initial solid state thus having a notable impact on the subsequent plasma dynamics. The nonlinear absorption processes (associated to the solid state) are also shown to have an influence on the thermodynamic quantities after the phase transition, leading to target deformations depending on the initial solid state. The negative consequences for the ICF schemes consist in shearing of the ablator and possibly preliminary heating of the deuterium-tritium fuel.

16.
Phys Rev Lett ; 123(6): 065001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491185

RESUMEN

Using highly resolved 3D radiation-hydrodynamic simulations, we identify a novel mechanism by which the deleterious impact of laser imprinting is mitigated in direct-drive inertial confinement fusion. Unsupported shocks and associated rarefaction flows, commonly produced with short laser bursts, are found to reduce imprint modulations prior to target acceleration. Optimization through the choice of laser pulse with picket(s) and target dimensions may improve the stability of lower-adiabat designs, thus providing the necessary margin for ignition-relevant implosions.

17.
Phys Rev Lett ; 123(5): 055002, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491329

RESUMEN

Collisionless shocks are ubiquitous in the Universe as a consequence of supersonic plasma flows sweeping through interstellar and intergalactic media. These shocks are the cause of many observed astrophysical phenomena, but details of shock structure and behavior remain controversial because of the lack of ways to study them experimentally. Laboratory experiments reported here, with astrophysically relevant plasma parameters, demonstrate for the first time the formation of a quasiperpendicular magnetized collisionless shock. In the upstream it is fringed by a filamented turbulent region, a rudiment for a secondary Weibel-driven shock. This turbulent structure is found responsible for electron acceleration to energies exceeding the average energy by two orders of magnitude.

18.
Phys Rev E ; 99(6-1): 063208, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330608

RESUMEN

Perturbations in the velocity profile of a laser-ablation-driven shock wave seeded by speckle in the spatial beam intensity (i.e., laser imprint) have been measured. Direct measurements of these velocity perturbations were recorded using a two-dimensional high-resolution velocimeter probing plastic material shocked by a 100-ps picket laser pulse from the OMEGA laser system. The measured results for experiments with one, two, and five overlapping beams incident on the target clearly demonstrate a reduction in long-wavelength (>25-µm) perturbations with an increasing number of overlapping laser beams, consistent with theoretical expectations. These experimental measurements are crucial to validate radiation-hydrodynamics simulations of laser imprint for laser direct drive inertial confinement fusion research since they highlight the significant (factor of 3) underestimation of the level of seeded perturbation when the microphysics processes for initial plasma formation, such as multiphoton ionization are neglected.

19.
Nature ; 565(7741): 581-586, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700868

RESUMEN

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

20.
Phys Rev Lett ; 122(3): 035001, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735406

RESUMEN

Fuel-ion species dynamics in hydrodynamiclike shock-driven DT^{3}He-filled inertial confinement fusion implosion is quantitatively assessed for the first time using simultaneously measured D^{3}He and DT reaction histories. These reaction histories are measured with the particle x-ray temporal diagnostic, which captures the relative timing between different nuclear burns with unprecedented precision (∼10 ps). The observed 50±10 ps earlier D^{3}He reaction history timing (relative to DT) cannot be explained by average-ion hydrodynamic simulations and is attributed to fuel-ion species separation between the D, T, and ^{3}He ions during shock convergence and rebound. At the onset of the shock burn, inferred ^{3}He/T fuel ratio in the burn region using the measured reaction histories is much higher as compared to the initial gas-filled ratio. As T and ^{3}He have the same mass but different charge, these results indicate that the charge-to-mass ratio plays an important role in driving fuel-ion species separation during strong shock propagation even for these hydrodynamiclike plasmas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...