Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 13(8)2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893052

RESUMEN

Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington's disease and Parkinson's disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.


Asunto(s)
Genoma Mitocondrial , Pez Cebra , Animales , Genes Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Nature ; 592(7853): 195-204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828315

RESUMEN

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Asunto(s)
Células/metabolismo , Edición Génica/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organización & administración , Animales , Terapia Genética , Objetivos , Humanos , Estados Unidos
3.
Nat Rev Nephrol ; 14(11): 663-677, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30089813

RESUMEN

The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.


Asunto(s)
Proteína 9 Asociada a CRISPR , Reparación del ADN , Edición Génica/métodos , Enfermedades Renales/genética , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Marcación de Gen , Terapia Genética , Vectores Genéticos , Humanos , Enfermedades Renales/terapia , Efectores Tipo Activadores de la Transcripción , Nucleasas con Dedos de Zinc
4.
Hum Gene Ther ; 27(6): 419-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27230540

RESUMEN

Genome engineering has gone mainstream because of breakthroughs in defining and harnessing naturally occurring, customizable DNA recognition cursors (protein or RNA-guided). At present, most gene editing relies on these cursors to direct custom DNA endonucleases to a specific genomic sequence to induce a double-strand break. New tools for genome engineering are continuously being explored, and another advance in DNA targeting has recently been described. Argonaute isolated from Natronobacterium gregoryi (NgAgo) is an ssDNA-based cursor that thus far has no known limitations in sequence recognition, shows promise for high specificity, and for many applications may represent a potentially more accessible genome-editing system over prior tools as it requires only a single, 24-base, 5' phosphorylated ssDNA for DNA targeting. Genome engineering is in a remarkable moment of unprecedented growth with exponential reduction in costs reminiscent of Moore's law in electronics. Many questions remain with regard to Argonaute utility in specific systems, but there is no doubt that genome engineering is expanding into new and exciting areas from synthetic biology to gene therapy.


Asunto(s)
Proteínas Argonautas/genética , ADN de Cadena Simple/genética , Edición Génica , Animales , Marcación de Gen , Humanos
5.
Hum Gene Ther ; 27(6): 451-63, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26854857

RESUMEN

Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications.


Asunto(s)
Ingeniería Genética/métodos , Genómica/métodos , Efectores Tipo Activadores de la Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Edición Génica , Regulación de la Expresión Génica , Marcación de Gen , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Development ; 141(21): 4042-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25336735

RESUMEN

Recent advances in the targeted modification of complex eukaryotic genomes have unlocked a new era of genome engineering. From the pioneering work using zinc-finger nucleases (ZFNs), to the advent of the versatile and specific TALEN systems, and most recently the highly accessible CRISPR/Cas9 systems, we now possess an unprecedented ability to analyze developmental processes using sophisticated designer genetic tools. In this Review, we summarize the common approaches and applications of these still-evolving tools as they are being used in the most popular model developmental systems. Excitingly, these robust and simple genomic engineering tools also promise to revolutionize developmental studies using less well established experimental organisms.


Asunto(s)
Desoxirribonucleasas/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Desoxirribonucleasas/genética , Ingeniería Genética , Humanos , Mutación , Dedos de Zinc/genética , Dedos de Zinc/fisiología
7.
Circ Res ; 113(5): 571-87, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23948583

RESUMEN

Recent advances in the burgeoning field of genome engineering are accelerating the realization of personalized therapeutics for cardiovascular disease. In the postgenomic era, sequence-specific gene-editing tools enable the functional analysis of genetic alterations implicated in disease. In partnership with high-throughput model systems, efficient gene manipulation provides an increasingly powerful toolkit to study phenotypes associated with patient-specific genetic defects. Herein, this review emphasizes the latest developments in genome engineering and how applications within the field are transforming our understanding of personalized medicine with an emphasis on cardiovascular diseases.


Asunto(s)
Proteínas Bacterianas/fisiología , Enfermedades Cardiovasculares/genética , Desoxirribonucleasas de Localización Especificada Tipo II/fisiología , Desoxirribonucleasas/fisiología , Ingeniería Genética/métodos , Genómica , Células Madre Pluripotentes Inducidas/citología , Mutagénesis Sitio-Dirigida/métodos , Medicina de Precisión/tendencias , Xanthomonas/enzimología , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Enfermedades Cardiovasculares/terapia , Diferenciación Celular , Células Cultivadas/citología , Células Cultivadas/trasplante , ADN/genética , ADN/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Predicción , Genes Reporteros , Ingeniería Genética/tendencias , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Modelos Cardiovasculares , Modelos Genéticos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/fisiología , Reparación del ADN por Recombinación , Especificidad por Sustrato , Xanthomonas axonopodis/enzimología , Pez Cebra/genética
8.
Zebrafish ; 10(1): 116-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23536990

RESUMEN

We are entering a new era in our ability to modify and edit the genomes of model organisms. Zinc finger nucleases (ZFNs) opened the door to the first custom nuclease-targeted genome engineering in the late 1990s. However, ZFNs remained out of reach for most research labs because of the difficulty of production, high costs, and modest efficacy in many applications. Transcription activator-like effector nucleases (TALENs) were built upon a DNA binding system discovered in a group of plant bacterial pathogens and broadened custom nuclease technology, showing significant improvements in both targeting flexibility and efficiency. Perhaps most importantly, TALENs are open source and easy to produce, providing zebrafish laboratories around the world with affordable tools that can be made in-house rapidly, at low cost, and with reliably high activity. Now a new system for targeted genome engineering derived from the CRISPR/Cas system in eubacteria and archaea promises to simplify this process further. Together, these tools will help overcome many of the bottlenecks that have constrained gene targeting in zebrafish, paving the way for advanced genome engineering applications in this model teleost.


Asunto(s)
Marcación de Gen/métodos , Secuencias Invertidas Repetidas , Pez Cebra/genética , Animales , Genoma , Plásmidos/genética , Plásmidos/metabolismo , Pez Cebra/metabolismo
9.
Nature ; 491(7422): 114-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23000899

RESUMEN

The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and human disease with a rich array of in vivo genetic and molecular tools. However, the inability to readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we show that this enhanced TALEN toolkit has a high efficiency in inducing locus-specific DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino-based targeted gene knockdowns. With this updated TALEN system, we successfully used single-stranded DNA oligonucleotides to precisely modify sequences at predefined locations in the zebrafish genome through homology-directed repair, including the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into somatic tissue in vivo. We further show successful germline transmission of both EcoRV and mloxP engineered chromosomes. This combined approach offers the potential to model genetic variation as well as to generate targeted conditional alleles.


Asunto(s)
Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Ingeniería Genética/métodos , Genoma/genética , Pez Cebra/genética , Alelos , Animales , Sitios de Ligazón Microbiológica/genética , Secuencia de Bases , Cromosomas/genética , Roturas del ADN , ADN de Cadena Simple/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genómica/métodos , Genotipo , Mutación de Línea Germinal/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Reparación del ADN por Recombinación/genética
10.
Clin Chem ; 57(6): 864-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21482747

RESUMEN

BACKGROUND: B-type natriuretic peptide (BNP), a key cardiac hormone in cardiorenal homeostasis, is produced as a 108 amino acid prohormone, proBNP1-108, which is converted to a biologically active peptide BNP1-32 and an inactive N-terminal (NT)-proBNP1-76. The widely accepted model is that the normal heart releases a proteolytically processed BNP1-32 and NT-proBNP, whereas the diseased heart secretes high amounts of unprocessed/glycosylated proBNP1-108 or inappropriately processed BNPs. In contrast, circulating proBNP1-108 has recently been identified in healthy individuals, indicating that the normal heart also secretes unprocessed proBNP1-108. However, the mechanism of proBNP1-108 secretion from the normal heart remains elusive. Our goal was to determine the molecular mechanisms underlying proBNP1-108 intracellular trafficking and secretion from the normal heart. METHODS: We expressed preproBNP in cardiomyocytes, and determined the subcellular localization and dominant intracellular and extracellular forms of BNP. RESULTS: Intracellular immunoreactive BNPs were first accumulated in the Golgi apparatus, and then distributed throughout the cytoplasm as secretory vesicles. The predominant intracellular form of BNP was nonglycosylated proBNP1-108, rather than BNP1-32. Glycosylated proBNP1-108, but not nonglycosylated proBNP1-108, was detected as the major extracellular form in the culture supernatants of preproBNP-expressing cell lines and primary human cardiomyocytes. Ablation of O-glycosylation of proBNP1-108 at T71 residue, near the convertase recognition site, reduced the extracellular proBNP1-108 and increased extracellular BNP1-32. CONCLUSIONS: Intracellular proBNP trafficking occurs through a conventional Golgi-endoplasmic reticulum pathway. Glycosylation of proBNP1-108 controls the stability and processing of extracellular proBNP1-108. Our data establish a new BNP secretion model in which the normal cardiac cells secrete glycosylated proBNP1-108.


Asunto(s)
Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Animales , Línea Celular , Espacio Extracelular/metabolismo , Femenino , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Ratones , Persona de Mediana Edad , Mutación , Péptido Natriurético Encefálico/genética , Señales de Clasificación de Proteína , Transporte de Proteínas
11.
Circulation ; 123(12): 1297-305, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21403100

RESUMEN

BACKGROUND: Diastolic dysfunction associated with high blood pressure (BP) leads to cardiac remodeling and fibrosis and progression to congestive heart failure. B-type natriuretic peptide (BNP) has BP-lowering, antifibrotic, and antihypertrophic properties, which makes BNP an attractive agent for attenuating the adverse cardiac remodeling associated with hypertension. In the current study, we tested the effects of sustained cardiac proBNP gene delivery on BP, cardiac function, and remodeling in spontaneously hypertensive rats (SHR). METHODS AND RESULTS: We used the myocardium-tropic adeno-associated virus serotype 9 (AAV9) vector to achieve continuously enhanced cardiac rat proBNP expression. In SHR, a single systemic administration of AAV9 vector allowed long-term cardiac BNP overexpression, resulting in reductions in systolic and diastolic BP for 9 months after injection. Left ventricular (LV) thickness, LV end-systolic dimensions, and LV mass were reduced, whereas ejection fraction was significantly increased, in BNP-treated compared with untreated SHR. Circumferential systolic strain and strain rate of the early phase of diastole were improved in BNP-treated compared with untreated SHR. Noncardiac overexpression of BNP via AAV2 vector was not associated with changes in BP and plasma BNP in SHR. Furthermore, normal Wistar rats injected with AAV9 proBNP vector showed significantly reduced heart weights 4 weeks after injection without BP reduction. CONCLUSIONS: AAV9 vector facilitates sustained cardiac proBNP overexpression and improves LV function in hypertensive heart disease. Long-term proBNP delivery improved both systolic and diastolic function. The effects on cardiac structure and function occurred independently of BP-lowering effects in normal Wistar rats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Terapia Genética/métodos , Insuficiencia Cardíaca/prevención & control , Hipertensión/terapia , Precursores de Proteínas/genética , Adenoviridae/genética , Animales , Presión Sanguínea/genética , Ecocardiografía , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/genética , Hipertensión/genética , Plásmidos/genética , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Remodelación Ventricular/genética
12.
Yale J Biol Med ; 83(4): 171-84, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21165336

RESUMEN

Soil transmitted helminths (STHs) affect more than one billion of the world's population and are very prevalent in regions with high poverty rates and poor sanitation. Efforts to achieve Millennium Development Goals, such as combating diseases and increasing the number of people with access to safe drinking water and proper sanitation facilities, will directly help in eliminating STHs. The Plains regions of Bangladesh has one of the highest prevalence rates of STHs, and the efforts made by the World Health Organization might not be enough to eradicate these diseases in this region before the 2015 goal. This survey was conducted in the Manikganj district of Central Bangladesh to evaluate local awareness about the transmission and prevention of STHs. The results from this survey show that although a large percentage of the respondents were knowledgeable about the spread and impact of intestinal worms, the majority of individuals still do not take the necessary steps to prevent infection. Our findings demonstrate the complexity of controlling and eliminating STHs and show that concluding efforts should incorporate additional measures for vaccine development as well as improved educational efforts that are sensitive to the region's traditions and cultures.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Helmintiasis/prevención & control , Helmintiasis/transmisión , Helmintos/fisiología , Intestinos/parasitología , Animales , Bangladesh/epidemiología , Helmintiasis/epidemiología , Humanos , Suelo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...